Citation: Huan Li, Yuxuan Han, Zi Yang, Zhenyu Yao, Lianhui Wang, Xiuling Cui. Rh(Ⅲ)-catalyzed annulation of azobenzenes and α-Cl ketones toward 3-acyl-2H-indazoles[J]. Chinese Chemical Letters, ;2021, 32(5): 1709-1712. doi: 10.1016/j.cclet.2020.12.027 shu

Rh(Ⅲ)-catalyzed annulation of azobenzenes and α-Cl ketones toward 3-acyl-2H-indazoles

    * Corresponding author.
    E-mail address: cuixl@hqu.edu.cn (X. Cui).
  • Received Date: 8 October 2020
    Revised Date: 16 December 2020
    Accepted Date: 17 December 2020
    Available Online: 20 December 2020

Figures(5)

  • Rhodium(Ⅲ)-catalyzed [4 + 1] cyclization of azobenzenes with α-Cl ketones has been developed. 3-Acyl-2H-indazoles could be easily afforded in up to 97% yields for more than 30 examples. The obtained products are potentially valuable in organic synthesis and drug discovery. This protocol featured with high efficiency, extensive functional group tolerance and mild reaction conditions. The one-step efficient construction of an anti-inflammatory agent confirms the practicability of this procedure.
  • 加载中
    1. [1]

      (a) J.D. Rodgers, B.L. Johnson, C.W. Chang, et al., Bioorg. Med. Chem. Lett. 6 (1996) 2919-2924;
      (b) S. Bräse, C. Gil, K. Knepper, Bioorg. Med. Chem. Lett. 10 (2002) 2415-2437;
      (c) H. Cerecetto, A. Gerpe, M. Gonza'lez, V.J. Ara'n, C.O. de Oca'riz, Mini-Rev. Med. Chem. 5 (2005) 869-878;
      (d) J. Magano, M. Waldo, D. Greene, E. Nord, Org. Process Res. Dev. 12 (2008) 877-883;
      (e) M.J. Haddadin, W.E. Conrad, M.J. Kurth, Mini-Rev. Med. Chem. 12 (2012) 1293-1300.

    2. [2]

      (a) L.J. Huang, M.L. Shih, H.S. Chen, et al., Bioorg. Med. Chem. 14 (2006) 528-536;
      (b) R.J. Steffan, E.M. Matelan. WO 2006/050006A2, 2006;
      (c) R. Halim, M. Harding, R. Hufton, et al., WO 2012/051659A1, 2012;
      (d) Y. Jia, J. Zhang, J. Feng, et al., Chem. Biol. Drug Des. 83 (2014) 306-316;
      (e) W. Aman, J. Lee, M. Kim, et al., Med. Chem. Lett. 26 (2016) 1188-1192

    3. [3]

      (a) M.D. Angelis, F. Stossi, K.A. Carlson, B.S. Katzenellenbogen, J.A. Katzenellenbogen, J. Med. Chem. 48 (2005) 1132-1144;
      (b) G. Luo, L. Chen, G. Dubowchik, J. Org. Chem. 71 (2006) 5392-5395;
      (c) A. Bunnell, C. O'Yang, A. Petrica, M.J. Soth, Synth. Commun. 36 (2006) 285-293;
      (d) C. Wu, Y. Fang, R.C. Larock, F. Shi, Org. Lett. 12 (2010) 2234-2237;
      (e) M.R. Kumar, A. Park, N. Park, S. Lee, Org. Lett. 13 (2011) 3542-2545;
      (f) A. Unsinn, P. Knochel, Chem. Commun. 48 (2012) 2680-2682;
      (g) W.S. Yong, S. Park, H. Yun, P.H. Lee, Adv. Synth. Catal. 358 (2016) 1958-1967;
      (h) Z.A. Henley, B.D. Bax, L.M. Inglesby, et al., ACS Med. Chem. Lett. 8 (2017) 1093-1098;
      (i) J.S. Zhu, N. Kraemer, M.E. Shatskikh, et al., Org. Lett. 20 (2018) 4736-4739;
      (j) Q. Gao, X. Han, P. Tong, et al., Org. Lett. 21 (2019) 6074-6078.

    4. [4]

      (a) L. Ackermann, Chem. Rev. 111 (2011) 1315-1345;
      (b) S.H. Cho, J.Y. Kim, J. Kwak, S. Chang, Chem. Soc. Rev. 40 (2011) 5068-5083;
      (c) N. Kuhl, M.N. Hopkinson, J. Wencel-Delord, F. Glorius, Angew. Chem. Int. Ed. 51 (2012) 10236-10254;
      (d) G. Rouquet, N. Chatani, Angew. Chem. Int. Ed. 52 (2013) 11726-11743;
      (e) S.D. DeSarkar, W. Liu, S.I. Kozhushkov, L. Ackermann, Adv. Synth. Catal. 356 (2014) 1461-1479;
      (f) S.A. Girard, T. Knauber, C.J. Li, Angew. Chem. Int. Ed. 53 (2014) 74-100;
      (g) O. Daugulis, J. Roane, L.D. Tran, Acc. Chem. Res. 48 (2015) 1053-1064;
      (h) Z. Huang, H.N. Lim, F. Mo, M.C. Young, G. Dong, Chem. Soc. Rev. 44 (2015) 7764-7786;
      (i) Z. Chen, B. Wang, Y. Zhang, et al., Org. Chem. Front. 2 (2015) 1107-1295;
      (j) W. Liu, L. Ackermann, ACS Catal. 6 (2016) 3743-3752;
      (k) C. Sambiagio, D. Schonbauer, M. Schnürch, et al., Chem. Soc. Rev. 47 (2018) 6603-6743;
      (l) X. Han, P.P. Lin, Q. Li, Chin. Chem. Lett. 30 (2019) 1495-1502.

    5. [5]

      (a) T. Zhou, B. Li, B. Wang, Org. Lett. 22 (2016) 5066-5069;
      (b) P. Hu, Y. Zhang, B. Liu, X. Li, Org. Chem. Front. 5 (2018) 3263-3266;
      (c) L. Wang, D. Xiong, L. Jie, C. Yu, X. Cui, Chin. Chem. Lett. 29 (2018) 907-910;
      (d) Z. Shen, C. Pi, X. Cui, Y. Wu, Chin. Chem. Lett. 30 (2019) 1374-1378;
      (e) X. Song, B.N.D. Doan, X. Zhang, R. Lee, X. Fan, Org. Lett. 2 (2020) 46-51.

    6. [6]

      (a) Y. Lian, R.G. Bergman, L.D. Lavis, J.A. Ellman, J. Am. Chem. Soc. 135 (2013) 7122-7125;
      (b) D. Zhao, Q. Wu, X. Huang, et al., Chem. Eur. J. 19 (2013) 6239-9244;
      (c) C. Qian, D. Lin, Y. Deng, et al., Org. Biomol. Chem. 12 (2014) 5866-5875;
      (d) J.R. Hummel, J.A. Ellman, J. Am. Chem. Soc. 137 (2015) 490-498;
      (e) S. Sharma, S.H. Han, I.S. Kim, et al., Org. Lett. 17 (2015) 2852-2855;
      (f) X. Geng, C. Wang, Org. Lett. 17 (2015) 2434-2467;
      (g) T. Jeong, S.H. Han, et al., Org. Lett. 18 (2016) 232-235;
      (h) G. Hong, A.N. Aruma, X. Zhu, S. Wu, L. Wang, Synthesis 48 (2016) 1147-1158;
      (i) Z. Long, Y. Yang, J. You, Org. Lett. 19 (2017) 2781-2784;
      (j) S. Cai, S. Lin, X. Yi, C. Xi, J. Org. Chem. 82 (2017) 512-520;
      (k) Z. Long, Z. Wang, D. Zhou, D. Wan, J. You, Org. Lett. 19 (2017) 2777-2780;
      (l) X. Chen, G. Zheng, G. Song, X. Li, Adv. Synth. Catal. 360 (2018) 2836-2842;
      (m) R. Chun, S. Kim, I.S. Kim, et al., Adv. Synth. Catal. 361 (2019) 1-11;
      (n) J. Zhu, S. Sun, J. Cheng, Tetrahedron Lett. 59 (2018) 2284-2287;
      (o) H. Oh, S. Han, A.K. Pandey, et al., J. Org. Chem. 83 (2018) 4070-4077.

    7. [7]

      D.G. Yu, F. de Azambuja, F. Glorius, Angew. Chem. Int. Ed. 53(2014) 2754-2758.  doi: 10.1002/anie.201310272

    8. [8]

      J. Li, Z. Zhang, M. Tang, X. Zhang, J. Jin, Org. Lett. 18(2016) 3898-3901.  doi: 10.1021/acs.orglett.6b01916

    9. [9]

      (a) C. Yang, F. Song, J. Chen, Y. Huang, Adv. Synth. Catal. 359 (2017) 3496-3502;
      (b) C. Xie, Z. Dai, Y. Niu, C. Ma, J. Org. Chem. 83 (2018) 2317-2323;
      (c) R.A. Bohmann, J.H. Schoebel, Y. Unoh, M. Miura, C. Bolm, Adv. Synth. Catal. 361 (2019) 2000-2003;
      (d) H. Liu, C. Wu, H. Liu, J. Wang, J. Org. Chem. 84 (2019) 13262-13275.

    10. [10]

      J. Zhou, J. Li, H. Liu, et al., Org. Lett. 20(2018) 7645-7649.  doi: 10.1021/acs.orglett.8b03383

    11. [11]

      (a) S. Patai, Z. Rappoport, The Chemistry of α-Haloketones, α-Haloaldehydes and α-Haloimines, Wiley, New York, 1988, pp. 1-489;
      (b) W.A. Erian, M.S. Sherif, M.H. Gaber, Molecules 8 (2003) 793-865.

    12. [12]

      (a) L. Xu, L. Wang, X. Cui, et al., Org. Lett. 19 (2017) 4343-4346;
      (b) Y. Feng, N. Tian, Y. Li, et al., Org. Lett. 19 (2017) 1658-1661;
      (c) Y. Yu, Y. Feng, R. Chauvin, et al., Org. Lett. 20 (2018) 4209-4212;
      (d) Z. Yang, Z. Song, L. Wang, L. Jie, X. Cui, Chem. Commun. 55 (2019) 6094-6097;
      (e) B. Wu, Z. Yang, H. Zhang, L. Wang, X. Cui, Chem. Commun. 55 (2019) 4190-4193;
      (f) S. Du, C. Pi, T. Wan, Y. Wu, X. Cui, Adv. Synth. Catal. 361 (2019) 1766-1770;
      (g) S. Huang, H. Li, X. Sun, et al., Org. Lett. 21 (2019) 5570-5774;
      (h) J. Ren, X. Yan, X. Cui, et al., Green Chem. 22 (2020) 265-269;
      (i) Y. Wu, C. Pi, X. Cui, Y. Wu, Org. Lett. 22 (2020) 361-364;
      (j) Y. He, C. Pi, Y. Wu, X. Cui, Chin. Chem. Lett. 31 (2020) 396-400.

  • 加载中
    1. [1]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    2. [2]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    3. [3]

      Chao ChenWenwen YuGuangen HuangXuelian RenXiangli ChenYixin LiShenggui LiangMengmeng XuMingyue ZhengYaxi YangHe HuangWei TangBing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574

    4. [4]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    5. [5]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    6. [6]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    7. [7]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    8. [8]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    9. [9]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    10. [10]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    11. [11]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    12. [12]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    13. [13]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    14. [14]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    15. [15]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    16. [16]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    18. [18]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    20. [20]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

Metrics
  • PDF Downloads(7)
  • Abstract views(739)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return