Citation: Guang-Ya Zhang, Sun-Hong Ruan, Yan-Yun Li, Jing-Xing Gao. Manganese catalyzed asymmetric transfer hydrogenation of ketones[J]. Chinese Chemical Letters, ;2021, 32(4): 1415-1418. doi: 10.1016/j.cclet.2020.10.023 shu

Manganese catalyzed asymmetric transfer hydrogenation of ketones

    * Corresponding author.
    E-mail addresse: yanyunli@xmu.edu.cn (Y.-Y. Li).
  • Received Date: 15 August 2020
    Revised Date: 15 October 2020
    Accepted Date: 19 October 2020
    Available Online: 21 October 2020

Figures(3)

  • The asymmetric transfer hydrogenation (ATH) of a wide range of ketones catalyzed by manganese complex as well as chiral PxNy-type ligand under mild conditions was investigated. Using 2-propanol as hydrogen source, various ketones could be enantioselectively hydrogenated by combining cheap, readily available [MnBr(CO)5] with chiral, 22-membered macrocyclic ligand (R, R, R', R')-CyP2N4 (L5) with 2 mol% of catalyst loading, affording highly valuable chiral alcohols with up to 95% ee.
  • 加载中
    1. [1]

      (a) J.G. de Vries, C.J. Elsevier, The Handbook of Homogeneous Hydrogenation, Wiley-VCH, Weinheim, 2006;
      (b) T. Ikariya, Bifunctional molecular catalysis, in: T. Ikariya, M. Shibasaki (Eds.), Topics in Organometallic Chemistry, Springer-Verlag, Berlin, 2011 pp. 31;
      (c) Y.Y. Li, S.L. Yu, W.Y. Shen, et al., Acc. Chem. Res. 48 (2015) 2587-2598;
      (d) R.H. Morris, Acc. Chem. Res. 48 (2015) 1494-1502;
      (e) F. Foubelo, C. Najera, M. Yus, Tetrahedron Asymmetry 26 (2015) 769-790;
      (f) T. Ohkuma, N. Arai, Chem. Rec. 16 (2016) 2801-2819.

    2. [2]

      A. Matsunami, Y. Kayaki, Tetrahedron Lett. 59(2018) 504-513.  doi: 10.1016/j.tetlet.2017.12.078

    3. [3]

      D. Wang, D. Astruc, Chem. Rev. 115(2015) 6621-6686.

    4. [4]

      M.J. Palmer, M. Wills, Tetrahedron Asymmetry 10(1999) 2045-2061.  doi: 10.1016/S0957-4166(99)00216-5

    5. [5]

      (a) F. Kallmeier, R. Kempe, Angew. Chem. Int. Ed. 57 (2018) 46-60;
      (b) D. Wei, C. Darcel, Chem. Rev. 119 (2019) 2550-2610;
      (c) I. Bauer, H.J. Knolker, Chem. Rev. 115(2015) 3170-3387;
      (d) H. Pellissier, Coord. Chem. Rev. 386 (2019) 1-31;
      (e) W.Y. Ai, R. Zhong, X.F. Liu, et al., Chem. Rev. 119 (2019) 2876-2953;
      (f) H. Pellissier, Coord. Chem. Rev. 360 (2018) 122-168;
      (g) H. Pellissier, H. Clavier, Chem. Rev. 114 (2014) 2775-2823;
      (h) S. Chakraborty, P. Bhattacharya, H.G. Dai, et al., Acc. Chem. Res. 48 (2015) 1995-2003.

    6. [6]

      (a) N. Gorgas, K. Kirchner, Acc. Chem. Res. 51 (2018) 1558-1569;
      (b) Y.Y. Hu, B.W. Zhou, C.Y. Wang, Acc. Chem. Res. 51 (2018) 816-827;
      (c) W. Liu, J.T. Groves, Acc. Chem. Res. 48 (2015) 1727-1735;
      (d) A. Nodzewska, A. Wadolowska, M. Watkinson, Coord. Chem. Rev. 382 (2019) 181-216;
      (e) D.A. Valyaev, G. Lavigne, N. Lugan, Coord. Chem. Rev. 308 (2016) 191-235;
      (f) B. Qiu, C.G. Xia, W. Sun, Chin. Chem. Lett. 30 (2019) 698-701.

    7. [7]

      S. Elangovan, C. Topf, S. Fischer, et al., J. Am. Chem. Soc. 138(2016) 8809-8814.  doi: 10.1021/jacs.6b03709

    8. [8]

      (a) S. Elangovan, M. Garbe, H. Jiao, et al., Angew. Chem. Int. Ed. 55 (2016) 15364-15368;
      (b) V. Papa, J.R. Cabrero-Antonino, E. Alberico, et al., Chem. Sci. 8 (2017) 3576-3585;
      (c) R. van Putten, E. Uslamin, M. Garbe, et al., Angew. Chem. Int. Ed. 56 (2017) 7531-7534;
      (d) M. Perez, S. Elangovan, A. Spannenberg, et al., ChemCatChem 10 (2017) 83-86.

    9. [9]

      (a) F. Kallmeier, T. Irrgang, T. Dietel, et al., Angew. Chem. Int. Ed. 55 (2016) 11806-11809;
      (b) F. Freitag, T. Irrgang, R. Kempe, J. Am. Chem. Soc. 141 (2019) 11677-11685.

    10. [10]

      A. Kaithal, M. Holscher, W. Leitner, Angew. Chem. Int. Ed. 57(2018) 13449-13453.  doi: 10.1002/anie.201808676

    11. [11]

      (a) A. Bruneau-Voisine, D. Wang, T. Roisnel, et al., Catal. Commun. 92 (2017) 1-4;
      (b) H.R. Li, D. Wei, A. Bruneau-Voisine, et al., Organometallics 37 (2018) 1271-1279;
      (c) D. Wei, A. Bruneau-Voisine, T. Chauvin, et al., Adv. Synth. Catal. 360 (2018) 676-681;
      (d) A. Bruneau-Voisine, D. Wang, V. Dorcet, et al., Org. Lett. 19 (2017) 3656-3659.

    12. [12]

      (a) N.A. Espinosa-Jalapa, A. Nerush, L.J.W. Shimon, et al., Chem. Eur. J. 23 (2017) 5934-5938;
      (b) A. Kumar, T. Janes, N.A. Espinosa-Jalapa, et al., Angew. Chem. Int. Ed. 57 (2018) 12076-12080;
      (c) Y.Q. Zou, S. Chakraborty, A. Nerush, et al., ACS Catal. 8 (2018) 8014-8019;
      (d) U.K. Das, A. Kumar, Y. Ben-David, et al., J. Am. Chem. Soc. 141 (2019) 12962-12966.

    13. [13]

      (a) M. Glatz, B. Stoger, D. Himmelbauer, et al., ACS Catal. 8 (2018) 4009-4016;
      (b) F. Bertini, M. Glatz, N. Gorgas, et al., Chem. Sci. 8 (2017) 5024-5029;
      (c) S. Weber, B. Stoger, K. Kirchner, Org. Lett. 20 (2018) 7212-7215.

    14. [14]

      M.B. Widegren, M.L. Clarke, Org. Lett. 20(2018) 2654-2658.  doi: 10.1021/acs.orglett.8b00864

    15. [15]

      (a) K. Ganguli, S. Shee, D. Panja, et al., Dalton Trans. 48 (2019) 7358-7366;
      (b) N.V. Shvydkiy, O. Vyhiyskyi, Y.V. Nelyubina, et al., ChemCatChem 11 (2019) 1602-1605;
      (c) O. Martinez-Ferrate, C. Werle, G. Francio, et al., ChemCatChem 10 (2018) 4514-4518;
      (d) A. Dubey, S.M.W. Rahaman, R.R. Fayzullin, et al., ChemCatChem 11 (2019) 3844-3852;
      (e) R. van Putten, J. Benschop, V.J. de Munck, et al., ChemCatChem 11 (2019) 5232-5235.

    16. [16]

      (a) Z.H. Shao, Y. Li, C.G. Liu, et al., Nat. Commun. 11 (2020) 591;
      (b) Y.J. Wang, L. Zhu, Z.H. Shao, et al., J. Am. Chem. Soc. 141 (2019) 17337-17349.

    17. [17]

      Z.L. Wang, L. Chen, G.L. Mao, et al., Chin. Chem. Lett. 31(2020) 1890-1894.  doi: 10.1016/j.cclet.2020.02.025

    18. [18]

      (a) M.B. Widegren, G.J. Harkness, A.M.Z. Slawin, et al., Angew. Chem. Int. Ed. 56 (2017) 5825-5828;
      (b) M. Garbe, K. Junge, S. Walker, et al., Angew. Chem. Int. Ed. 56 (2017) 11237-11241;
      (c) L.L. Zhang, Y.T. Tang, Z.B. Han, et al., Angew. Chem. Int. Ed. 58 (2019) 4973-4977;
      (d) A. Passera, A. Mezzetti, Adv. Synth. Catal. 361 (2019) 4691-4706;
      (e) F. Ling, J.C. Chen, S.F. Nian, et al., Synlett 31 (2020) 285-289;
      (f) M. Garbe, Z.H. Wei, B. Tannert, et al., Adv. Synth. Catal. 361 (2019) 1913-1920;
      (g) M.B. Widegren, M.L. Clarke, Catal. Sci. Technol. 9 (2019) 6047-6058;
      (h) L.L. Zhang, Z. Wang, Z.B. Han, et al., Angew. Chem. Int. Ed. 59 (2020) 15565-15569;
      (i) X.C. Ma, Z.Q. Zuo, G.X. Liu, et al., ACS Omega 2 (2017) 4688-4692;
      (j) X.X. Yang, C.Y. Wang, Chem. Asian J. 13 (2018) 2307-2315.

    19. [19]

      (a) A. Zirakzadeh, S.R.M.M. de Aguiar, B. Stoger, et al., ChemCatChem 9 (2017) 1744-1748;
      (b) F. Ling, H.C. Hou, J.C. Chen, et al., Org. Lett. 21 (2019) 3937-3941;
      (c) K.Z. Demmans, M.E. Olson, R.H. Morris, Organometallics 37 (2018) 4608-4618;
      (d) D. Wang, A. Bruneau-Voisine, J.B. Sortais, Catal. Commun. 105 (2018) 31-36;
      (e) J. Schneekonig, K. Junge, M. Beller, Synlett 30 (2019) 503-507;
      (f) R. van Putten, G.A. Filonenko, A.G. de Castro, et al., Organometallics 38 (2019) 3187-3196;
      (g) A. Passera, A. Mezzetti, Angew. Chem. Int. Ed. 59 (2020) 187-191.

    20. [20]

      J.X. Gao, T. Ikariya, R. Noyori, Organometallics 15(1996) 1087-1089.  doi: 10.1021/om950833b

    21. [21]

      J.X. Gao, H. Zhang, X.D. Yi, et al., Chirality 12(2000) 383-388.  doi: 10.1002/(SICI)1520-636X(2000)12:5/6<383::AID-CHIR15>3.0.CO;2-C

    22. [22]

      M. Tao, F. Wu, T. Li, et al., Chin. Chem. Lett. 28(2017) 97-100.  doi: 10.1016/j.cclet.2016.05.028

    23. [23]

      S.L. Yu, W.Y. Shen, Y.Y. Li, et al., Adv. Synth. Catal. 354(2012) 818-822.  doi: 10.1002/adsc.201100733

    24. [24]

      Y.Y. Li, S.L. Yu, X.F. Wu, et al., J. Am. Chem. Soc. 136(2014) 4031-4039.  doi: 10.1021/ja5003636

    25. [25]

      D. Zhang, E.Z. Zhu, Z.W. Lin, et al., Asian J. Org. Chem. 5(2016) 1323-1326.  doi: 10.1002/ajoc.201600358

  • 加载中
    1. [1]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    2. [2]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    3. [3]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    4. [4]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    5. [5]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    6. [6]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    7. [7]

      Chao ChenWenwen YuGuangen HuangXuelian RenXiangli ChenYixin LiShenggui LiangMengmeng XuMingyue ZhengYaxi YangHe HuangWei TangBing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574

    8. [8]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    9. [9]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    10. [10]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    11. [11]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    12. [12]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    13. [13]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    14. [14]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    15. [15]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    16. [16]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    17. [17]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    18. [18]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    19. [19]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    20. [20]

      Jiahao LiuPeng LiuJunhong DuanQiongxuan XieJie FengHongpei TanZe MiYing LiYunjie LiaoPengfei RongWenhu ZhouXiang Gao . Macrophages-mediated tumor accumulation and deep penetration of bismuth/manganese biomineralized nanoparticles for enhanced radiotherapy. Chinese Chemical Letters, 2024, 35(12): 109632-. doi: 10.1016/j.cclet.2024.109632

Metrics
  • PDF Downloads(6)
  • Abstract views(557)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return