Photo-responsive metal/semiconductor hybrid nanostructure: A promising electrocatalyst for solar light enhanced fuel cell reaction
-
* Corresponding author.
E-mail address: zhumingshan@jnu.edu.cn (M. Zhu).
Citation:
Jiayue Hu, Chunyang Zhai, Mingshan Zhu. Photo-responsive metal/semiconductor hybrid nanostructure: A promising electrocatalyst for solar light enhanced fuel cell reaction[J]. Chinese Chemical Letters,
;2021, 32(4): 1348-1358.
doi:
10.1016/j.cclet.2020.09.049
A.S. Arico, S. Srinivasan, V. Antonucci, Fuel Cells 1(2001) 133-161.
doi: 10.1002/1615-6854(200107)1:2<133::AID-FUCE133>3.0.CO;2-5
X. Zhao, M. Yin, L. Ma, et al., Energ. Environ. Sci. 4(2011) 2736-2753.
doi: 10.1039/c1ee01307f
N. Kakati, J. Maiti, S.H. Lee, et al., Chem. Rev. 114(2014) 12397-12429.
doi: 10.1021/cr400389f
J.M. Andujar, F. Segura, Renew. Sust. Energ. Rev. 13(2009) 2309-2322.
doi: 10.1016/j.rser.2009.03.015
M.N. Cao, D.S. Wu, R. Cao, ChemCatChem 6(2014) 26-45.
doi: 10.1002/cctc.201300647
S. Sharma, B.G. Pollet, J. Power Sources 208(2012) 96-119.
doi: 10.1016/j.jpowsour.2012.02.011
E. Antolini, Appl. Catal. B: Environ. 100(2010) 413-426.
doi: 10.1016/j.apcatb.2010.08.025
H.S. Liu, C.J. Song, L. Zhang, et al., J. Power Sources 155(2006) 95-110.
doi: 10.1016/j.jpowsour.2006.01.030
H.R. Yue, Y.J. Zhao, X.B. Ma, J.L. Gong, Chem. Soc. Rev. 41(2012) 4218-4244.
doi: 10.1039/c2cs15359a
H.J. Kim, S.M. Choi, S. Green, et al., Appl. Catal. B: Environ. 101(2011) 366-375.
doi: 10.1016/j.apcatb.2010.10.005
Y. Liu, C. Luo, H.C. Liu, Angew. Chem. Int. Ed. 51(2012) 3249-3253.
doi: 10.1002/anie.201200351
A.S. Moura, J.L.C. Fajin, M. Mandado, M. Cordeiro, Catalysts 7(2017) 20.
doi: 10.3390/catal7010020
M. Abdullah, S.K. Kamarudin, Renew. Sust. Energ. Rev. 76(2017) 212-225.
doi: 10.1016/j.rser.2017.01.057
C.M. Suarez, S. Hernández, N. Russo, Appl. Catal. A: Gen. 504(2015) 158-170.
doi: 10.1016/j.apcata.2014.11.044
K. Drew, G. Girishkumar, K. Vinodgopal, P.V. Kamat, J. Phys. Chem. B 109(2005) 11851-11857.
A.L. Linsebigler, G. Lu, J.T. Yates, Chem. Rev. 95(1995) 735-758.
doi: 10.1021/cr00035a013
J. Schneider, M. Matsuoka, M. Takeuchi, et al., Chem. Rev. 114(2014) 9919-9986.
doi: 10.1021/cr5001892
N. Mojumder, S. Sarker, S.A. Abbas, Z. Tian, V. Subramanian, ACS Appl. Mater. Interfaces 6(2014) 5585-5594.
doi: 10.1021/am406040v
C. Su, Y. Hsueh, C. Kei, C. Lin, T. Perng, J. Phys. Chem. C 117(2013) 11610-11618.
Y. Song, Z. Gao, P. Schmuki, Electrochem. Commun. 13(2011) 290-293.
doi: 10.1016/j.elecom.2011.01.006
M.G. Hosseini, M.M. Momeni, Electrochim. Acta 70(2012) 1-9.
doi: 10.1016/j.electacta.2012.02.051
D. Chu, S. Wang, P. Zheng, et al., ChemSusChem 2(2009) 171-176.
doi: 10.1002/cssc.200800158
A. Leelavathi, G. Madras, N. Ravishankar, J. Am. Chem. Soc. 136(2014) 14445-14455.
doi: 10.1021/ja5059444
M.G. Hosseini, M.M. Momeni, Fuel Cells 12(2012) 406-414.
doi: 10.1002/fuce.201100173
E. Antolini, Appl. Catal. B: Environ. 181(2016) 298-313.
doi: 10.1016/j.apcatb.2015.08.007
J. Cheng, X. Hu, J. Zhang, et al., J. Mater. Sci. 52(2017) 8444-8454.
doi: 10.1007/s10853-017-1110-x
C. Zhai, M. Sun, Y. Du, J. Inorg. Mater. 32(2017) 897-903.
doi: 10.15541/jim20160651
C. Jia, H. Yin, H. Ma, et al., J. Phys. Chem. C 113(2009) 16138-16143.
doi: 10.1021/jp904191k
Z. Li, X. Cui, Y. Lin, J. Nanosci. Nanotechnol. 9(2009) 2297-2302.
doi: 10.1166/jnn.2009.SE45
H. Zhang, W. Zhou, Y. Du, et al., Int. J. Hydrogen Energ. 35(2010) 13290-13297.
doi: 10.1016/j.ijhydene.2010.09.025
H. He, P. Xiao, M. Zhou, et al., Catal. Commun. 16(2011) 140-143.
doi: 10.1016/j.catcom.2011.09.031
S. Wu, J. He, J. Zhou, et al., J. Mater. Chem. 21(2011) 2852-2854.
doi: 10.1039/c0jm03402a
A.S. Polo, M.C. Santos, R.F. Souza, W. Alves, J. Power Sources 196(2011) 872-876.
doi: 10.1016/j.jpowsour.2010.06.076
C. Lin, H. Huang, J. Yang, M. Shao, Microelectron. Eng. 88(2011) 2644-2646.
doi: 10.1016/j.mee.2011.01.048
W. Li, Y. Bai, F. Li, et al., J. Mater. Chem. 22(2012) 4025-4031.
doi: 10.1039/c2jm14847a
H. He, P. Xiao, M. Zhou, et al., Int. J. Hydrogen Energ. 37(2012) 4967-4973.
doi: 10.1016/j.ijhydene.2011.12.107
W. Chen, Y. Lin, T. Yang, Y.C. Pu, Y.J. Hsu, Chem. Commun. 49(2013) 8486-8488.
doi: 10.1039/c3cc43298j
T. Spataru, M. Marcu, N. Spataru, Appl. Surf. Sci. 269(2013) 171-174.
doi: 10.1016/j.apsusc.2012.09.121
C. Wang, F. Jiang, R. Zhou, et al., Mater. Res. Bull. 48(2013) 1099-1104.
doi: 10.1016/j.materresbull.2012.11.112
H. He, P. Xiao, M. Zhou, et al., Electrochim. Acta 88(2013) 782-789.
doi: 10.1016/j.electacta.2012.10.136
C. Wang, F. Jiang, R. Yue, H. Wang, Y. Du, J. Solid State Electr. 18(2014) 515-522.
doi: 10.1007/s10008-013-2282-1
L. Ye, Z. Li, X. Zhang, F. Lei, S. Lin, J. Mater. Chem. A 2(2014) 21010-21019.
doi: 10.1039/C4TA05094K
D.V. Arulmani, J.I. Eastcott, S.G. Mavilla, E.B. Easton, J. Power Sources 247(2014) 890-895.
doi: 10.1016/j.jpowsour.2013.08.140
J. Huang, J. Zang, Y. Zhao, L. Dong, Y. Wang, Mater. Lett. 137(2014) 335-338.
doi: 10.1016/j.matlet.2014.09.051
L. Ye, Z. Li, L. Zhang, F. Lei, S. Lin, J. Colloid Interface Sci. 433(2014) 156-162.
doi: 10.1016/j.jcis.2014.06.012
T. Wang, J. Tang, S. Wu, X. Fan, J. He, J. Power Sources 248(2014) 510-516.
doi: 10.1016/j.jpowsour.2013.09.109
C. Zhai, M. Zhu, D. Bin, et al., ACS Appl. Mater. Interfaces 6(2014) 17753-17761.
doi: 10.1021/am504263e
C. Wang, R. Yue, H. Wang, et al., Int. J. Hydrogen Energ. 39(2014) 5764-5771.
doi: 10.1016/j.ijhydene.2014.01.192
X. Fan, C. Zhang, H. Xue, et al., RSC Adv. 5(2015) 78880-78888.
doi: 10.1039/C5RA12810B
Y.H. Hsu, A.T. Nguyen, Y.H. Chiu, J. Li, Y.J. Hsu, Appl. Catal. B: Environ. 185(2016) 133-140.
doi: 10.1016/j.apcatb.2015.11.049
Z. Li, L. Ye, F. Lei, et al., Electrochim. Acta 188(2016) 450-460.
doi: 10.1016/j.electacta.2015.11.149
C. Zhai, M. Zhu, F. Pang, et al., ACS Appl. Mater. Interfaces 8(2016) 5972-5980.
doi: 10.1021/acsami.5b10234
F. Lei, Z. Li, L. Ye, Y. Wang, S. Lin, Int. J. Hydrogen Energ. 41(2016) 255-264.
doi: 10.1016/j.ijhydene.2015.09.098
S. Xu, L. Ye, Z. Li, Y. Wang, et al., Catalysts 6(2016) 144.
doi: 10.3390/catal6090144
M.S. Zhu, C.Y. Zhai, M.J. Sun, Appl. Catal. B: Environ. 203(2017) 108-115.
doi: 10.1016/j.apcatb.2016.10.012
J.Y. Hu, C.K. Yu, C.Y. Zhai, et al., Catal. Today 315(2018) 36-45.
doi: 10.1016/j.cattod.2018.02.043
C.Y. Zhai, M.J. Sun, M.S. Zhu, K. Zhang, Y.K. Du, Int. J. Hydrogen Energ. 42(2017) 5006-5015.
doi: 10.1016/j.ijhydene.2016.11.035
M.J. Sun, J.Y. Hu, C.Y. Zhai, M.S. Zhu, J.G. Pan, ACS Appl. Mater. Interfaces 9(2017) 13223-13230.
doi: 10.1021/acsami.7b01840
M.J. Sun, J.Y. Hu, C.Y. Zhai, M.S. Zhu, J.G. Pan, Electrochim. Acta 245(2017) 863-871.
doi: 10.1016/j.electacta.2017.06.035
C. Odetola, L.N. Trevani, E.B. Easton, Appl. Catal. B: Environ. 210(2017) 263-275.
doi: 10.1016/j.apcatb.2017.03.027
J. Georgieva, S. Sotiropoulos, E. Valova, et al., J. Photochem. Photobiol. AChem. 346(2017) 70-76.
doi: 10.1016/j.jphotochem.2017.05.049
J. Zhang, N. Su, X. Hu, et al., RSC Adv. 7(2017) 56194-56203.
doi: 10.1039/C7RA11564D
J. Zhang, X. Hu, F. Zhu, et al., Nanotechnology 28(2017) 505603.
doi: 10.1088/1361-6528/aa9699
J.Y. Hu, M.J. Sun, X.Y. Cai, et al., J. Taiwan Inst. Chem. E 80(2017) 231-238.
doi: 10.1016/j.jtice.2017.07.001
X. Hu, C. Ge, N. Su, et al., J. Alloys. Compd. 692(2017) 848-854.
doi: 10.1016/j.jallcom.2016.09.032
J.Y. Hu, C.Y. Zhai, C.K. Yu, et al., J. Colloid Interface Sci. 524(2018) 195-203.
doi: 10.1016/j.jcis.2018.03.104
S. Hu, L. Jiang, Y. Tu, et al., J. Taiwan Inst. Chem. E 86(2018) 113-119.
doi: 10.1016/j.jtice.2018.02.024
C.Y. Zhai, M.J. Sun, L.X. Zeng, et al., Appl. Catal. B: Environ. 243(2019) 283-293.
doi: 10.1016/j.apcatb.2018.10.047
X.D. Wang, M.J. Sun, Y. Guo, J.Y. Hu, M.S. Zhu, J. Colloid Interface Sci. 558(2019) 38-46.
H.F. Gao, C.Y. Zhai, N.Q. Fu, et al., J. Colloid Interface Sci. 561(2020) 338-347.
doi: 10.1016/j.jcis.2019.10.114
H.M. Zhang, J. He, C.Y. Zhai, M.S. Zhu, Chin. Chem. Lett. 30(2019) 2338-2342.
doi: 10.1016/j.cclet.2019.07.021
H.M. Zhang, C.Y. Zhai, P. Yang, et al., Energy Technol. 8(2020) 1900731.
doi: 10.1002/ente.201900731
Y. Wang, J.Y. Hu, C.Y. Zhai, et al., Energy Technol. 7(2019) 1800539.
doi: 10.1002/ente.201800539
S. Chang, A. Xie, S. Chen, J. Xiang, J. Electroanal. Chem. 719(2014) 86-91.
doi: 10.1016/j.jelechem.2014.01.026
S. Kang, P. Shen, Electrochim. Acta 168(2015) 104-110.
doi: 10.1016/j.electacta.2015.03.203
A. Leelavathi, G. Madras, N. Ravishankar, J. Mater. Chem. A 3(2015) 17459-17468.
doi: 10.1039/C5TA03988F
Z. Jin, Q. Wang, W. Zheng, X. Cui, ACS Appl. Mater. Interfaces 8(2016) 5273-5279.
doi: 10.1021/acsami.5b11259
A. Arabzadeh, A. Salimi, M. Ashrafi, S. Soltanian, P. Servati, Catal. Sci. Technol. 6(2016) 3485-3496.
doi: 10.1039/C5CY01693B
H. Yang, L. He, Z. Wang, et al., ChemistrySelect 2(2017) 9842-9846.
doi: 10.1002/slct.201701406
M.J. Sun, C.Y. Zhai, J.Y. Hu, M.S. Zhu, J.G. Pan, J. Colloid Interface Sci. 511(2018) 110-118.
doi: 10.1016/j.jcis.2017.09.103
A.C. Queiroz, E.A. Ticianelli, J. Electrochem. Soc. 165(2018) 123-131.
C.Y. Zhai, J.Y. Hu, M.J. Sun, M.S. Zhu, Appl. Surf. Sci. 430(2018) 578-584.
doi: 10.1016/j.apsusc.2017.06.175
J.Y. Hu, C.Y. Zhai, L.X. Zeng, Y.K. Du, M.S. Zhu, Catal. Sci. Technol. 8(2018) 3562-3571.
doi: 10.1039/C8CY00864G
J.Y. Hu, C.Y. Zhai, H.F. Gao, et al., Sustain. Energ. Fuels 3(2019) 439-449.
doi: 10.1039/C8SE00507A
H.F. Gao, C.Y. Zhai, H.M. Zhang, Energ. Technol. 7(2019) 1900253.
doi: 10.1002/ente.201900253
H.F. Gao, C.Y. Zhai, C. Yuan, Z. Liu, M.S. Zhu, Electrochim. Acta 330(2020) 135214.
doi: 10.1016/j.electacta.2019.135214
S. Wasmus, A.J. Küver, J. Electroanal. Chem. 461(1999) 14-31.
doi: 10.1016/S0022-0728(98)00197-1
X. Ren, P. Zelenay, S. Thomas, J. Davey, S. Gottesfeld, J. Power Sources 86(2000) 111-116.
doi: 10.1016/S0378-7753(99)00407-3
S.C. Thomas, X.M. Ren, S. Gottesfeld, P. Zelenay, Electrochim. Acta 47(2002) 3741-3748.
doi: 10.1016/S0013-4686(02)00344-4
R. Dillon, S. Srinivasan, A.S. Arico, V. Antonucci, J. Power Sources 127(2004) 112-126.
doi: 10.1016/j.jpowsour.2003.09.032
C. Yuan, H.F. Gao, Q.Y. Xu, et al., Appl. Surf. Sci. 521(2020) 146431.
doi: 10.1016/j.apsusc.2020.146431
H.F. Gao, C. Yuan, Z.L. He, et al., Energ. Technol. 8(2020) 2000210.
doi: 10.1002/ente.202000210
X.X. Li, K.L. Zhang, M. Zhou, et al., Sustain. Energ. Fuels 4(2020) 2569-2582.
doi: 10.1039/C9SE01132C
E. Contreras, C. Palacios, B. Huerta, et al., ACS Appl. Mater. Interfaces 3(2020) 8755-8764.
Z.L. He, C. Yuan, H.F. Gao, et al., ACS Sustainable Chem. Eng. 8(2020) 12331-12341.
doi: 10.1021/acssuschemeng.0c05097
J. Willsau, J. Heitbaum, J. Electroanal. Chem. 194(1985) 27-35.
doi: 10.1016/0022-0728(85)87003-0
T. Iwasita, E. Pastor, Electrochim. Acta 39(1994) 531-537.
doi: 10.1016/0013-4686(94)80097-9
B. Bittins-Cattaneo, S. Wilhelm, E. Cattaneo, H.W. Buschmann, W. Vielstich, Phys. Chem. Chem. Phys. 92(1988) 1210-1218.
H. Hitmi, E. Belgsir, J.M. Léger, C. Lamy, R. Lezna, Electrochim. Acta 39(1994) 407-415.
doi: 10.1016/0013-4686(94)80080-4
J. Gootzen, W. Visscher, J. Van Veen, Langmuir 12(1996) 5076-5082.
doi: 10.1021/la960103o
V.M. Schmidt, R. Ianniello, E. Pastor, S. González, J. Phys. Chem. 100(1996) 17901-17908.
doi: 10.1021/jp9617027
C.M. Miesse, W.S. Jung, K.J. Jeong, J. Power Sources 162(2006) 532-540.
doi: 10.1016/j.jpowsour.2006.07.013
Y. Zhu, S.Y. Ha, R.I. Masel, J. Power Sources 130(2004) 8-14.
doi: 10.1016/j.jpowsour.2003.11.051
C. Rice, S. Ha, R. Masel, P. Waszczuk, A. Wieckowski, J. Power Sources 111(2002) 83-89.
doi: 10.1016/S0378-7753(02)00271-9
A. Serov, C. Kwak, Appl. Catal. B: Environ. 97(2010) 1-12.
doi: 10.1016/j.apcatb.2010.04.011
L. An, R. Chen, J. Power Sources 329(2016) 484-501.
doi: 10.1016/j.jpowsour.2016.08.105
V. Livshits, E. Peled, J. Power Sources 161(2006) 1187-1191.
doi: 10.1016/j.jpowsour.2006.04.141
V. Livshits, A. Philosoph, E. Peled, J. Power Sources 178(2008) 687-691.
doi: 10.1016/j.jpowsour.2007.07.054
M.G. Hosseini, M.M. Momeni, J. Mol. Catal. A-Chem. 355(2012) 216-222.
doi: 10.1016/j.molcata.2011.12.020
M.G. Hosseini, M.M. Momeni, Appl. Cata. A: Gen 427(2012) 35-42.
T. Saida, N. Ogiwara, Y. Takasu, W. Sugimoto, J. Phys. Chem. C 114(2010) 1390-13396.
A. Pandikumar, S. Murugesan, R. Ramaraj, ACSAppl. Mater. Interfaces2(2010) 1912-1917.
doi: 10.1021/am100242p
Z. Zhang, Y. Yuan, Y. Fang, et al., J. Electroanal. Chem. 610(2007) 179-185.
doi: 10.1016/j.jelechem.2007.07.028
E. Hutter, J.H. Fendler, Adv. Mater. 16(2004) 1685-1706.
doi: 10.1002/adma.200400271
J.L. Wu, F.C. Chen, Y.S. Hsiao, et al., ACS Nano 5(2011) 959-967.
doi: 10.1021/nn102295p
Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, T. Majima, J. Am. Chem. Soc. 136(2014) 458-465.
doi: 10.1021/ja410994f
P.P. Fang, S. Chen, H. Deng, et al., ACS Nano 7(2013) 9241-9248.
doi: 10.1021/nn403879g
N.S. Karan, A.M. Keller, S. Sampat, et al., Chem. Sci. 6(2015) 2224-2236.
doi: 10.1039/C5SC00020C
S. Tripathi, M. Rani, N. Singh, Electrochim. Acta 167(2015) 179-186.
doi: 10.1016/j.electacta.2015.02.245
X. Zhang, Y. Liu, S.T. Lee, S. Yang, Z. Kang, Energy Environ. Sci. 7(2014) 1409-1419.
doi: 10.1039/c3ee43278e
A. Sobhani, M.W. Knight, Y. Wang, et al., Nat. Commun. 4(2013) 1-6.
R. Long, K. Mao, M. Gong, et al., Angew. Chem. Int. Ed. 53(2014) 3205-3209.
doi: 10.1002/anie.201309660
M. Lu, C. Tsai, H. Chen, et al., Nano Energy 20(2016) 264-271.
doi: 10.1016/j.nanoen.2015.12.026
Z. Zheng, T. Tachikawa, T. Majima, J. Am. Chem. Soc. 136(2014) 6870-6873.
doi: 10.1021/ja502704n
H. Yang, L. He, Z. Wang, Electrochim. Acta 209(2016) 591-598.
doi: 10.1016/j.electacta.2016.05.120
H. Xu, P. Song, J. Wang, et al., ChemElectroChem 5(2018) 1191-1196.
doi: 10.1002/celc.201701345
H. Xu, P. Song, J. Wang, et al., ACS Sustain. Chem. Eng. 6(2018) 7159-7167.
doi: 10.1021/acssuschemeng.8b01228
Q. Wang, W. Zheng, H. Chen, et al., J. Power Sources 316(2016) 29-36.
doi: 10.1016/j.jpowsour.2016.03.057
S. Lee, Y. Wy, Y.W. Lee, K. Ham, S.W. Han, Small 13(2017) 1701633.
doi: 10.1002/smll.201701633
H. Xu, P.P. Song, C. Fernandez, et al., J. Taiwan Inst. Chem. E. 91(2018) 316-322.
doi: 10.1016/j.jtice.2018.05.036
H. Xu, P.P. Song, B. Yan, et al., ACS Sustain. Chem. Eng. 6(2018) 4138-4146.
doi: 10.1021/acssuschemeng.7b04560
G. Chen, M. Sun, J. Li, et al., Nanoscale 11(2019) 18874-18880.
doi: 10.1039/C9NR06372B
S.P. Lim, A. Pandikumar, N.M. Huang, H.N. Lim, Int. J. Hydrogen Energ. 39(2014) 14720-14729.
doi: 10.1016/j.ijhydene.2014.07.066
J.A. Diaz-Real, E. Ortiz-Ortega, M.P. Gurrola, J. Ledesma-Garcia, L.G. Arriaga, Electrochim. Acta 206(2016) 388-399.
doi: 10.1016/j.electacta.2016.04.163
L. Wang, L. Xu, Y. Wang, Z.M. Su, R. Liu, Electrochim. Acta 155(2015) 1-7.
doi: 10.1016/j.electacta.2014.11.114
Q. Cai, W.T. Hong, C.Y. Jian, J. Li, W. Liu, ACS Sustain. Chem. Eng. 6(2018) 4231-4238.
doi: 10.1021/acssuschemeng.7b04661
Ning DING , Siyu WANG , Shihua YU , Pengcheng XU , Dandan HAN , Dexin SHI , Chao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Yaxin Sun , Huiyu Li , Shiquan Guo , Congju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418
Wenbiao Zhang , Bolong Yang , Zhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630
Min LUO , Xiaonan WANG , Yaqin ZHANG , Tian PANG , Fuzhi LI , Pu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Haiyang Gu , Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352
Huirong LIU , Hao XU , Dunru ZHU , Junyong ZHANG , Chunhua GONG , Jingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066
Genlin Sun , Yachun Luo , Zhihong Yan , Hongdeng Qiu , Weiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277
Pu Zhang , Xiang Mao , Xuehua Dong , Ling Huang , Liling Cao , Daojiang Gao , Guohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235
Huan Hu , Ying Zhang , Shi-Shuang Huang , Zhi-Gang Li , Yungui Liu , Rui Feng , Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395
Haobo Wang , Fei Wang , Yong Liu , Zhongxiu Liu , Yingjie Miao , Wanhong Zhang , Guangxin Wang , Jiangtao Ji , Qiaobao Zhang . Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chinese Chemical Letters, 2025, 36(2): 109589-. doi: 10.1016/j.cclet.2024.109589
Jiayin Zhou , Depeng Liu , Longqiang Li , Min Qi , Guangqiang Yin , Tao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
Jiaqi Lin , Pupu Yang , Yimin Jiang , Shiqian Du , Dongcai Zhang , Gen Huang , Jinbo Wang , Jun Wang , Qie Liu , Miaoyu Li , Yujie Wu , Peng Long , Yangyang Zhou , Li Tao , Shuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435
Boqiang Wang , Yongzhuo Xu , Jiajia Wang , Muyang Yang , Guo-Jun Deng , Wen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502
Mao-Fan Li , Ming‐Yu Guo , De-Xuan Liu , Xiao-Xian Chen , Wei-Jian Xu , Wei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507
Han-Min Wang , Yan-Chen Li , Lu-Lu Sun , Ming-Ye Tang , Jia Liu , Jiahao Cai , Lei Dong , Jia Li , Yi Zang , Hai-Hao Han , Xiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603
Xuying Yu , Jiarong Mi , Yulan Han , Cai Sun , Mingsheng Wang , Guocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233