Citation: Tian Du, Biwen Wang, Chao Wang, Jianliang Xiao, Weijun Tang. Cobalt-catalyzed asymmetric hydrogenation of ketones: A remarkable additive effect on enantioselectivity[J]. Chinese Chemical Letters, ;2021, 32(3): 1241-1244. doi: 10.1016/j.cclet.2020.09.011 shu

Cobalt-catalyzed asymmetric hydrogenation of ketones: A remarkable additive effect on enantioselectivity

    * Corresponding author.
    E-mail address: tangwj@snnu.edu.cn (W. Tang).
  • Received Date: 31 July 2020
    Revised Date: 22 August 2020
    Accepted Date: 8 September 2020
    Available Online: 10 September 2020

Figures(4)

  • A chiral cobalt pincer complex, when combined with an achiral electron-rich mono-phosphine ligand, catalyzes efficient asymmetric hydrogenation of a wide range of aryl ketones, affording chiral alcohols with high yields and moderate to excellent enantioselectivities (29 examples, up to 93% ee). Notably, the achiral mono-phosphine ligand shows a remarkable effect on the enantioselectivity of the reaction.
  • 加载中
    1. [1]

      (a) C.S.G. Seo, R.H. Morris, Organometallics 38 (2019) 47-65;
      (b) J.D. Hayler, D.K. Leahy, E.M. Simmons, Organometallics 38 (2019) 36-46;
      (c) J. Magano, J.R. Dunetz, Org. Process Res. Dev. 16 (2012) 1156-1184;
      (d) F.D. Klingler, Acc. Chem. Res. 40 (2007) 1367-1376;
      (e) W.S. Knowles, Angew. Chem., Int. Ed. 41 (2002) 1998-2007.

    2. [2]

      (a) W. Ai, R. Zhong, X. Liu, et al., Chem. Rev. 119 (2019) 2876-2953;
      (b) W. Liu, B. Sahoo, K. Junge, et al., Acc. Chem. Res. 51 (2018) 1858-1869;
      (c) G.A. Filonenko, R. van Putten, E.J.M. Hensen, et al., Chem. Soc. Rev. 47 (2018) 1459-1483;
      (d) B. Maji, M.K. Barman, Synthesis 49 (2017) 3377-3393;
      (e) J.L. Renaud, S. Gaillard, Synthesis 48 (2016) 3659-3683;
      (f) Y.Y. Li, S.L. Yu, W.Y. Shen, et al., Acc. Chem. Res. 48 (2015) 2587-2598;
      (g) H. Pellissier, H. Clavier, Chem. Rev. 114 (2014) 2775-2823.

    3. [3]

      (a) R. Huber, A. Passera, E. Gubler, et al., Adv. Synth. Catal. 360 (2018) 2900-2913;
      (b) S.A.M. Smith, P.O. Lagaditis, A. Luepke, et al., Chem. Eur. J. 23 (2017) 7212-7216;
      (c) P.O. Lagaditis, P.E. Sues, J.F. Sonnenberg, et al., J. Am. Chem. Soc. 136 (2014) 1367-1380;
      (d) Y. Li, S. Yu, X. Wu, et al., J. Am. Chem. Soc. 136 (2014) 4031-4039;
      (e) Y. Hu, Z. Zhang, J. Zhang, et al., Angew. Chem. Int. Ed. 58 (2019) 15767-15771;
      (f) D. Zhang, E.Z. Zhu, Z.W. Lin, et al., Asian J. Org. Chem. 5 (2016) 1323-1326;
      (g) G. Liu, X. Zhang, H. Wang, et al., Chem. Commun. 56 (2020) 4934-4937;
      (h) B. Li, J. Chen, Z. Zhang, et al., Angew. Chem. Int. Ed. 58 (2019) 7329-7334;
      (i) Y. Liu, Z. Yi, X. Tan, et al., iScience 19 (2019) 63-73;
      (j) W. Gao, H. Lv, T. Zhang, et al., Chem. Sci. 8 (2017) 6419-6422;
      (k) L. Zhang, Y. Tang, Z. Han, et al., Angew. Chem. Int. Ed. 58 (2019) 4973-4977;
      (l) F. Ling, H. Hou, J. Chen, et al., Org. Lett. 21 (2019) 3937-3941.

    4. [4]

      (a) F.K. Shmidt, Y.S. Levkovskii, N.M. Ryutina, et al., React. Kinet. Catal. Lett. 12 (1979) 475-478;
      (b) L. Simandi, E. Budo, Acta Chim. 64 (1970) 125-138.

    5. [5]

      (a) H. Zhong, M.R. Friedfeld, P.J. Chirik, Angew. Chem. Int. Ed. 58 (2019) 9194-9198;
      (b) M.R. Friedfeld, H. Zhong, R.T. Ruck, et al., Science 360 (2018) 888-889;
      (c) J. Guo, X. Shen, Z. Lu, Angew. Chem., Int. Ed. 56 (2017) 615-618;
      (d) J. Guo, B. Cheng, X. Shen, et al., J. Am. Chem. Soc. 139 (2017) 15316-15319;
      (e) M.R. Friedfeld, M. Shevlin, G.W. Margulieux, et al., J. Am. Chem. Soc. 138 (2016) 3314-3324;
      (f) J. Chen, C. Chen, C. Ji, et al., Org. Lett. 18 (2016) 1594-1597;
      (g) M.R. Friedfeld, M. Shevlin, J.M. Hoyt, et al., Science 342 (2013) 1076-1080;
      (h) S. Monfette, Z.R. Turner, S.P. Semproni, et al., J. Am. Chem. Soc. 134 (2012) 4561-4564.

    6. [6]

      (a) R. Zhong, Z. Wei, W. Zhang, et al., Chem 5 (2019) 1552-1566;
      (b) Z. Shao, R. Zhong, R. Ferraccioli, et al., Chin. J. Chem. 37 (2019) 1125-1130;
      (c) S. Sandl, F. Schwarzhuber, S. Poellath, et al., Chem. Eur. J. 24 (2018) 3403-3407;
      (d) S. Roesler, J. Obenauf, R. Kempe, J. Am. Chem. Soc. 137 (2015) 7998-8001;
      (e) D. Gaertner, A. Welther, B.R. Rad, et al., Angew. Chem. Int. Ed. 53 (2014) 3722-3726;
      (f) G. Zhang, K.V. Vasudevan, B.L. Scott, et al., J. Am. Chem. Soc. 135 (2013) 8668-8681;
      (g) T.P. Lin, J.C. Peters, J. Am. Chem. Soc. 135 (2013) 15310-15313;
      (h) G. Zhang, B.L. Scott, S.K. Hanson, Angew. Chem. Int. Ed. 51 (2012) 12102-12106;
      (i) V. Massonneau, P. Le Maux, G. Simonneaux, J. Organomet. Chem. 288 (1985) C59-C60.

    7. [7]

      (a) R. Adam, J.R. Cabrero-Antonino, A. Spannenberg, et al., Angew. Chem. Int. Ed. 56 (2017) 3216-3220;
      (b) R. Adam, C.B. Bheeter, J.R. Cabrero-Antonino, et al., ChemSusChem 10 (2017) 842-846.

    8. [8]

      (a) Z. Shao, S. Fu, M. Wei, et al., Angew. Chem. Int. Ed. 55 (2016) 14653-14657;
      (b) S. Fu, N.Y. Chen, X. Liu, et al., J. Am. Chem. Soc. 138 (2016) 8588-8594;
      (c) M.V. Gradiski, B.T.H. Tsui, A.J. Lough, et al., Dalton Trans. 48 (2019) 2150-2159.

    9. [9]

      (a) R. Rexiti, Z.G. Zhang, J. Lu, et al., J. Org. Chem. 84 (2019) 1330-1338;
      (b) B. Pan, B. Liu, E. Yue, et al., ACS Catal. 6 (2016) 1247-1253;
      (c) T. Morimoto, Y. Yamaguchi, M. Suzuki, et al., Tetrahedron Lett. 41 (2000) 10025-10029.

    10. [10]

      T. Ohkuma, N. Utsumi, K. Tsutsumi, et al., J. Am. Chem. Soc. 128 (2006) 8724-8725.

  • 加载中
    1. [1]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    2. [2]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    3. [3]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    4. [4]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    5. [5]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    6. [6]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

    7. [7]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2024.100210

    8. [8]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    9. [9]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    10. [10]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    11. [11]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2024.100199

    12. [12]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    13. [13]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    14. [14]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    15. [15]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    16. [16]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    17. [17]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    18. [18]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    19. [19]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    20. [20]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

Metrics
  • PDF Downloads(32)
  • Abstract views(1240)
  • HTML views(194)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return