Citation: Chen Yan, Jing Sun, Chao-Guo Yan. Convenient construction of spiro[indoline-3, 5'-pyrrolo[3, 4-c]carbazole] and spiro[indene-2, 5'-pyrrolo[3, 4-c]carbazole] via acid-catalyzed Diels-Alder reaction[J]. Chinese Chemical Letters, ;2021, 32(3): 1253-1256. doi: 10.1016/j.cclet.2020.08.052 shu

Convenient construction of spiro[indoline-3, 5'-pyrrolo[3, 4-c]carbazole] and spiro[indene-2, 5'-pyrrolo[3, 4-c]carbazole] via acid-catalyzed Diels-Alder reaction

    * Corresponding author.
    E-mail address: cgyan@yzu.edu.cn (C.-G. Yan).
  • Received Date: 21 July 2020
    Revised Date: 21 August 2020
    Accepted Date: 31 August 2020
    Available Online: 2 September 2020

Figures(7)

  • p-TsOH catalyzed Diels-Alder reaction of 3-(indol-3-yl)maleimides with 3-phenacylideneoxindoles in toluene at 80 ℃ for two hours afforded cis/trans isomers of 3a', 4′, 6′, 10c'-tetrahydrospiro[indoline-3, 5′-pyrrolo[3, 4-c]carbazoles] in nearly comparable yields, which could be easily converted to the corresponding 4′, 6′-dihydrospiro[indoline-3, 5′-pyrrolo[3, 4-c]carbazole] in high yields and with high diastereoselectivity by further DDQ oxidation., the similar reaction of 3-(indol-3-yl)maAdditionallyleimides with 2-arylidene-1, 3-indanediones in toluene 80 ℃ and sequential DDQ oxidation afforded functionalized dihydrospiro[indene-2, 5′-pyrrolo[3, 4-c]carbazoles] as major products.
  • 加载中
    1. [1]

      (a) L.T. Shen, P.L. Shao, S. Ye, Adv. Synth. Catal. 353 (2011) 1943-1948;
      (b) T.Z. Li, Y. Jiang, Y.Q. Guan, et al., Chem. Commun. 50 (2014) 10790-10792;
      (c) T.P. Gao, J.B. Lin, X.Q. Hu, et al., Chem. Commun. 50 (2014) 8934-8936;
      (d) Y. Que, T. Li, C. Yu, et al., Org. Chem. 80 (2015) 3289-3294.

    2. [2]

      (a) G.J. Mei, F. Shi, Chem. Commun. 54 (2018) 6607-6621;
      (b) G.J. Mei, D. Li, G.X. Zhou, et al., Chem. Commun. 53 (2017) 10030-10033;
      (c) J.L. Wu, B.X. Du, Y.C. Zhang, et al., Adv. Synth. Catal. 358 (2016) 2777-2790;
      (d) Q.N. Zhu, Y.C. Zhang, M.M. Xu, et al., J. Org. Chem. 81 (2016) 7898-7907.

    3. [3]

      (a) K. Thevissen, A. Marchand, P. Chaltin, et al., Curr. Med. Chem. 16 (2009) 2205-2211;
      (b) R. Hesse, O. Kataeva, A.W. Schmidt, et al., Chem. Eur. J. 20 (2014) 9504-9509;
      (c) M.S. Shaikh, R. Karpoormath, N. Thapliyal, et al., Anticancer Agents Med. Chem. 15 (2015) 1049-1065;
      (d) S.P. Zhu, W.Y. Wang, K. Fang, et al., Chin. Chem. Lett. 25 (2014) 229-233.

    4. [4]

      (a) H.J. Jiang, J. Sun, J.L. Zhang, Curr. Org. Chem. 16 (2012) 2014-2025;
      (b) K.T. Kamtekar, A.P. Monkman, M.R. Bryce, Adv. Mater. 22 (2010) 572-582;
      (c) M.K. Hong, M.K. Ravva, P. Winget, et al., Chem. Mater. 28 (2016) 5791-5798;
      (d) B.W. Li, X.A. Song, X. Jiang, et al., Chin. Chem. Lett. 31 (2020) 1188-1192;
      (e) Y. Xiong, J.J. Zeng, et al., Chin. Chem. Lett. 30 (2019) 592-596.

    5. [5]

      (a) H.J. Knolker, R.R. Kethiri, Chem. Rev. 102 (2002) 4303-4427;
      (b) A.W. Schmidt, K.R. Reddy, H.J. Knlker, Chem. Rev. 112 (2012) 3193-3328;
      (c) S. Lancianesi, A. Palmieri, M. Petrini, Chem. Rev. 114 (2014) 7108-7149;
      (d) S.Z. Zhao, R.B. Andrade, J. Am. Chem. Soc. 135 (2013) 13334-13337;
      (e) T.L. Lan, H.J. Qin, W.T. Chen, et al., Chin. Chem. Lett. 31 (2020) 357-360.

    6. [6]

      (a) V.P. Kumar, K.K. Gruner, O. Kataeva, et al., Angew. Chem. Int. Ed. 52 (2013) 11073-11077;
      (b) S.H. Cho, J. Yoon, S. Chang, J. Am. Chem. Soc. 133 (2011) 5996-6005;
      (c) A.C. Hernandez-Perez, S.K. Collins, Angew. Chem. Int. Ed. 52 (2013) 12696-12700;
      (d) H. Gao, Q.L. Xu, M. Yousufuddin, et al., Angew. Chem. Int. Ed. 53 (2014) 2701-2705.

    7. [7]

      (a) C. Liu, X.Q. Han, X. Wang, et al., J. Am. Chem. Soc. 126 (2004) 3700-3701;
      (b) N. Kuroda, Y. Takah ashi, K. Yoshinaga, et al., Org. Lett. 8 (2006) 1843-1845;
      (c) F. Zhao, N. Li, Y.F. Zhu, et al., Org. Lett. 18 (2016) 1506-1509;
      (d) S.Z. Zhao, R.B. Andrade, J. Org. Chem. 82 (2017) 521-531.

    8. [8]

      (a) C. Gioia, A. Hauville, L. Bernardi, et al., Angew. Chem. Int. Ed. 47 (2008) 9236-9239;
      (b) Y. Tao, F. Zhang, C.Y. Tang, et al., Asian J. Org. Chem. 3 (2014) 1292-1301;
      (c) L.J. Zhou, B. Xu, J.L. Zhang, Angew. Chem. Int. Ed. 54 (2015) 9092-9096;
      (d) J.W. Ren, Z.F. Zhou, J.A. Xiao, et al., Eur. J. Org. Chem. 7 (2016) 1264-1268.

    9. [9]

      (a) Y.T. Yang, J.F. Zhu, G.C. Liao, et al., Med. Chem. 25 (2018) 2233-2244;
      (b) N. Ye, H.Y. Chen, E.A. Wold, et al., ACS Infect. Dis. 2 (2016) 382-392;
      (c) B. Yu, D.Q. Yu, H.M. Liu, Eur. J. Med. Chem. 97 (2015) 673-698;
      (d) B. Yu, Z.Q. Yu, P.P. Qi, et al., Eur. J. Med. Chem. 95 (2015) 35-40.

    10. [10]

      (a) G.S. Singh, Z.Y. Desta, Chem. Rev. 112 (2012) 6104-6155;
      (b) L. Hong, R. Wang, Adv. Synth. Catal. 355 (2013) 1023-1052;
      (c) Y. Liu, H. Wang, J. Wan, Asian J. Org. Chem. 2 (2013) 374-386;
      (d) Z. Liu, N. Li, X. Huang, et al., Tetrahedron. 70 (2014) 2406-2415.

    11. [11]

      (a) B. Tan, G. Hernandez-Torres, C.F. Barbas, J. Amer. Chem. Soc. 133 (2011) 12354-12357;
      (b) H.F. Zheng, P. He, Y.B. Liu, et al., Chem. Commun. 50 (2014) 8794-8796;
      (c) P. Sharma, N.P. Kumar, N.H. Krishna, et al., Org. Chem. Front. 3 (2016) 1503-1508;
      (d) Z.H. You, Y.H. Chen, Y. Tang, et al., Org. Lett. 20 (2018) 6682-6686.

    12. [12]

      (a) Y.K. Liu, M. Nappi, E. Arceo, et al., J. Am. Chem. Soc. 133 (2011) 15212-15218;
      (b) Y. Wang, M.S. Tu, L. Yin, et al., J. Org. Chem. 80 (2015) 3223-3232;
      (c) J.W. Ren, J. Wang, J.A. Xiao, et al., J. Org. Chem. 82 (2017) 6441-6449;
      (d) L.J. Huang, J. Weng, S. Wang, et al., Adv. Synth. Catal. 357 (2015) 993-1003.

    13. [13]

      (a) R.Y. Yang, J. Sun, Y. Tao, et al., J. Org. Chem. 82 (2017) 13277-13287;
      (b) R.Y. Yang, J. Sun, Q. Sun, C.G. Yan, J. Org. Chem. 83 (2018) 5909-5919;
      (c) D.Q. Wang, J. Sun, C.G. Yan, Chemistryselect 4 (2019) 10550-10554;
      (d) J. Sun, R.Y. Yang, S.C. Zhan, et al., ChemistrySelect 4 (2019) 10100-10103;
      (e) R. Ye, C.G. Yan, Eur. J. Org. Chem (2019) 5882-5886;
      (f) S.C. Zhan, J. Sun, R.Z. Liu, et al., Org. Biomol. Chem. 18 (2020) 163-168.

    14. [14]

      (a) Y.L. An, Z.Y. Shao, J. Chen, et al., Synthesis 45 (2013) 2719-2726;
      (b) E. Pereira, A. Youssef, M. El-Ghozzi, et al., Tetrahedron Lett. 55 (2014) 834-837.

    15. [15]

      (a) H. Henon, S. Messaoudi, B. Hugon, et al., Tetrahedron 61 (2005) 5599-5614;
      (b) E. Conchon, F. Anizon, B. Aboab, et al., Bioorg. Med. Chem. 16 (2008) 4419-4430;
      (c) B. Hugon, B. Pfeiffer, P. Renard, et al., Tetrahedron Lett. 44 (2003) 3935-3937;
      (d) E. Conchon, F. Anizon, B. Aboa, et al., J. Med. Chem. 50 (2007) 4669-4680;
      (e) H. Hénon, F. Anizon, N. Kucharczyk, et al., Synthesis (2006) 711-715;
      (f) Y.L. An, Z.H. Yang, H.H. Zhang, et al., Org. Lett. 18 (2016) 152-155.

    16. [16]

      (a) J. Sun, Y. Sun, H. Gong, et al., Org. Lett. 14 (2012) 5172-5175;
      (b) J. Sun, Y.J. Xie, C.G. Yan, J. Org. Chem. 78 (2013) 8354-8365;
      (c) H. Gao, J. Sun, C.G. Yan, J. Org. Chem. 79 (2014) 4131-4136;
      (d) Y. Han, Y.J. Sheng, C.G. Yan, Org. Lett. 16 (2014) 2654-2657;
      (e) J. Sun, L. Chen, H. Gong, et al., Org. Biomol. Chem. 13 (2015) 5905-5917;
      (f) L. Chen, J. Sun, J. Xie, et al., Org. Biomol. Chem. 14 (2016) 6497-6507.

    17. [17]

      (a) R.G. Shi, X.H. Wang, C.G. Yan, et al., Chem. Commun. 52 (2016) 6280-6283;
      (b) J. Cao, J. Sun, C.G. Yan, Org. Biomol. Chem. 16 (2018) 4170-4175;
      (c) R.Z. Liu, R.G. Shi, J. Sun, et al., Org. Chem. Front. 4 (2017) 354-357;
      (d) J. Sun, Y. Zhang, R.G. Shi, et al., Org. Biomol. Chem. 17 (2019) 3978-3983;
      (e) J. Cao, F. Yang, J. Sun, et al., J. Org. Chem. 84 (2019) 622-635.

  • 加载中
    1. [1]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    2. [2]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    3. [3]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    4. [4]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    5. [5]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    6. [6]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    7. [7]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    8. [8]

      Bowen LiTing WangMing XuYuqi WangZhaoxing LiMei LiuWenjing ZhangMing Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467

    9. [9]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    10. [10]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

    11. [11]

      Yuanyuan ZengFang LiuJun WangBianfei ShaoTao HeZhongzheng XiangYan WangShunyao ZhuTian YangSiting YuChangyang GongLei Liu . Fisetin micelles precisely exhibit a radiosensitization effect by inhibiting PDGFRβ/STAT1/STAT3/Bcl-2 signaling pathway in tumor. Chinese Chemical Letters, 2025, 36(2): 109734-. doi: 10.1016/j.cclet.2024.109734

    12. [12]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    13. [13]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    14. [14]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    15. [15]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    16. [16]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    17. [17]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    18. [18]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    19. [19]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    20. [20]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

Metrics
  • PDF Downloads(6)
  • Abstract views(1120)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return