Citation: Jiyuan Liu, Xueqing Gong. Relationships between the activities and Ce3+ concentrations of CeO2(111) for CO oxidation: A first-principle investigation[J]. Chinese Chemical Letters, ;2021, 32(3): 1127-1130. doi: 10.1016/j.cclet.2020.08.033 shu

Relationships between the activities and Ce3+ concentrations of CeO2(111) for CO oxidation: A first-principle investigation

    * Corresponding author.
    E-mail address: xgong@ecust.edu.cn (X. Gong).
  • Received Date: 20 July 2020
    Revised Date: 16 August 2020
    Accepted Date: 19 August 2020
    Available Online: 20 August 2020

Figures(4)

  • CO oxidation at ceria surfaces has been studied for decades, and many efforts have been devoted to understanding the effect of surface reduction on the catalytic activity. In this work, we theoretically studied the CO oxidation on the clean and reduced CeO2(111) surfaces using different surface cells to determine the relationships between the reduction degrees and calculated reaction energetics. It is found that the calculated barrier for the direct reaction between CO and surface lattice O drastically decreases with the increase of surface reduction degree. From electronic analysis, we found that the surface reduction can lead to the occurrence of localized electrons at the surface Ce, which affects the charge distribution at surface O. As the result, the surface O becomes more negatively charged and therefore more active in reacting with CO. This work then suggests that the localized 4f electron reservoir of Ce can act as the "pseudo-anion" at reduced CeO2 surfaces to activate surface lattice O for catalytic oxidative reactions.
  • 加载中
    1. [1]

      C.T. Campbell, Science 309 (2005) 713-714.  doi: 10.1126/science.1113955

    2. [2]

      (a) X.Q. Gong, L.L. Yin, J. Zhang, et al., Adv. Chem. Eng. 44 (2014) 1-60;
      (b) D. Ding, X. Li, S.Y. Lai, K. Gerdes, M. Liu, Energy Env. Sci. 7 (2014) 552-575;
      (c) D.R. Mullins, Surf. Sci. Rep. 70 (2015) 42-85;
      (d) T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Chem. Rev. 116 (2016) 5987-6041;
      (e) A. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2 (2018) 65-81.

    3. [3]

      (a) Y. Namai, K. Fukui, Y.J. Iwasawa, Phys. Chem. B 107 (2003) 11666-11673;
      (b) F. Esch, S. Fabris, L. Zhou, et al., Science 309 (2005) 752-755;
      (c) M. Nolan, J. Fearon, G. Watson, Solid State Ion. 177 (2006) 3069-3074;
      (d) H.Y. Li, H.F. Wang, X.Q. Gong, et al., Phys. Rev. B 79 (2009) 193401;
      (e) B. Chen, Y. Ma, L. Ding, et al., J. Phys. Chem. C 117 (2013) 5800-5810;
      (f) X.P. Wu, X.Q. Gong, J. Am. Chem. Soc. 137 (2015) 13228-13231;
      (g) X.P. Wu, X.Q. Gong, Phys. Rev. Lett. 116 (2016) 086102;
      (h) S. Li, Y. Xu, Y. Chen, et al., Angew. Chem. Int. Ed. 56 (2017) 10761-10765.

    4. [4]

      C. Doornkamp, V. Ponec, J. Mol. Catal. Chem. 162 (2000) 19-32.  doi: 10.1016/S1381-1169(00)00319-8

    5. [5]

      (a) E. Aneggi, J. Llorca, M. Boaro, A.J. Trovarelli, J. Catal. 234 (2005) 88-95;
      (b) C. Wang, X.K. Gu, H. Yan, et al., ACS Catal. 7 (2017) 887-891.

    6. [6]

      F. Chen, D. Liu, J. Zhang, et al., Phys. Chem. Chem. Phys. 14 (2012) 16573.  doi: 10.1039/c2cp41281k

    7. [7]

      (a) A. Trovarelli, C. Deleitenburg, G. Dolcetti, J.L. Lorca, J. Catal. 151 (1995) 111-124;
      (b) H.Y. Kim, H.M. Lee, G. Henkelman, J. Am. Chem. Soc. 134 (2012) 1560-1570;
      (c) R. Kopelent, J. van Bokhoven, A.J. Szlachetko, et al., Angew. Chem. Int. Ed. 54 (2015) 8728-8731;
      (d) J.X. Liu, Y. Su, I.A.W. Filot, E.J.M.A. Hensen, J. Am. Chem. Soc. 140 (2018) 4580-4587.

    8. [8]

      (a) E. Mamontov, T. Egami, R. Brezny, M. Koranne, S.J. Tyagi, Phys. Chem. B 104 (2000) 11110-11116;
      (b) M. Zhao, M. Shen, J. Wang, J. Catal. 248 (2007) 258-267;
      (c) Z. Wu, D.R. Mullins, L.F. Allard, Q. Zhang, L. Wang, Chin. Chem. Lett. 29 (2018) 795-799;
      (d) Y. Yan, H. Li, Z. Lu, et al., Chin. Chem. Lett. 30 (2019) 1153-1156;
      (e) X. Guo, Z. Qiu, J. Mao, R. Zhou, J. Power Sources 451 (2020) 227757.

    9. [9]

      L. Nie, D. Mei, H. Xiong, et al., Science 358 (2017) 1419-1423.  doi: 10.1126/science.aao2109

    10. [10]

      (a) S.D. Senanayake, J. Zhou, A.P. Baddorf, D.R. Mullins, Surf. Sci. 601 (2007) 3215-3223;
      (b) D. Schweke, L. Shelly, R.B. David, et al., J. Phys. Chem. C 124 (2020) 6180-6187.

    11. [11]

      Z. Liu, E. Huang, I. Orozco, et al., Science 368 (2020) 513-517.  doi: 10.1126/science.aba5005

    12. [12]

      (a) K.Z. Qi, G.C. Wang, W.J. Zheng, Surf. Sci. 614 (2013) 53-63;
      (b) K. Qi, F. Zasada, W. Piskorz, et al., J. Phys. Chem. C 120 (2016) 5442-5456;
      (c) K. Qi, D. Li, J. Fu, et al., J. Phys. Chem. C 118 (2014) 23320-23327.

    13. [13]

      (a) L. Song, A. Avorid, G.C. Groenenboom, J. Phys. Chem. A 117 (2013) 7571-7579;
      (b) H. Zhou, D. Wang, X.Q. Gong, Phys. Chem. Chem. Phys. 22 (2020) 7738-7746.

    14. [14]

      (a) Y. Tang, Y.G. Wang, J. Li, J. Phys. Chem. C 121 (2017) 11281-11289;
      (b) W. Song, L. Chen, J. Deng, et al., Phys. Chem. C 122 (2018) 25290-25300.

  • 加载中
    1. [1]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    2. [2]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    3. [3]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    4. [4]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    5. [5]

      Lihui OuZhancheng LiuDai-Huo LiuZhi Zhang . Cl-adsorbed Cu(111)/H2O interface selectively realizes electrochemical CO2 reduction towards C2H4 product: Mechanistic understanding. Chinese Chemical Letters, 2026, 37(2): 111920-. doi: 10.1016/j.cclet.2025.111920

    6. [6]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    7. [7]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    8. [8]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    9. [9]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    10. [10]

      Kailu GuoJinzhi JiaHuijiao WangZiyu HaoYinjian ChenKe ShiHaixia WuCailing Xu . Structural tuning and reconstruction of CeO2-coupled nickel selenides for robust water oxidation. Chinese Chemical Letters, 2025, 36(8): 110888-. doi: 10.1016/j.cclet.2025.110888

    11. [11]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    12. [12]

      Xiaofan ZHANGYu DUANMeijie SHINan LURenhong LIXiaoqing YAN . Z-scheme Co3O4/BiOBr heterojunction for efficient photoreduction CO2 reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1878-1888. doi: 10.11862/CJIC.20250079

    13. [13]

      Peng ZhangYitao YangTian QinXueqiu WuYuechang WeiJing XiongXi LiuYu WangZhen ZhaoJinqing JiaoLiwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396

    14. [14]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    15. [15]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    16. [16]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    17. [17]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    18. [18]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    19. [19]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    20. [20]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

Metrics
  • PDF Downloads(7)
  • Abstract views(1784)
  • HTML views(229)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return