Revolutions in algal biochar for different applications: State-of-the-art techniques and future scenarios
-
* Corresponding author.
E-mail address: stephen6949@hit.edu.cn (S.-H. Ho).
Citation: Chen Yi-Di, Liu Feiyu, Ren Nan-Qi, Shih-Hsin Ho. Revolutions in algal biochar for different applications: State-of-the-art techniques and future scenarios[J]. Chinese Chemical Letters, ;2020, 31(10): 2591-2602. doi: 10.1016/j.cclet.2020.08.019
K.L. Yu, B.F. Lau, P.L. Show, et al., Bioresour. Technol. 246 (2017) 2-11.
doi: 10.1016/j.biortech.2017.08.009
G. Kumar, S. Shobana, W.H. Chen, et al., Green Chem. 19 (2016) 44-67.
Y.D. Chen, S.H. Ho, D. Wang, et al., Bioresour. Technol. 247 (2018) 463-470.
doi: 10.1016/j.biortech.2017.09.125
B.-H. Cheng, R.J. Zeng, H. Jiang, Bioresour. Technol. 246 (2017) 224-233.
doi: 10.1016/j.biortech.2017.07.060
X. Xiao, B. Chen, Z. Chen, et al., Environ. Sci. Technol. 52 (2018) 5027-5047.
doi: 10.1021/acs.est.7b06487
M.B. Ariede, T.M. Candido, A.L.M. Jacome, et al., Algal Res. 25 (2017) 483-487.
doi: 10.1016/j.algal.2017.05.019
S.H. Ho, C.Y. Chen, D.J. Lee, J.S. Chang, Biotechnol. Adv. 29 (2011) 189-198.
doi: 10.1016/j.biotechadv.2010.11.001
Y.Y. Gan, H.C. Ong, P.L. Show, et al., Energ. Convers. Manage. 165 (2018) 152-162.
doi: 10.1016/j.enconman.2018.03.046
W. Gao, K. Chen, J. Zeng, et al., Bioresour. Technol. 243 (2017) 212-217.
doi: 10.1016/j.biortech.2017.06.041
Y.D. Chen, S.H. Ho, D. Nagarajan, et al., Curr. Opin. Biotechnol. 50 (2017) 101-110.
Y.D. Chen, S. Li, S.H. Ho, et al., Renew. Sustain. Energy Rev. 96 (2018) 76-90.
doi: 10.1016/j.rser.2018.07.028
X.J. Lee, H.C. Ong, Y.Y. Gan, et al., Energy Convers. Manage. 210 (2020)112707.
doi: 10.1016/j.enconman.2020.112707
S.H. Ho, C. Zhang, F. Tao, et al., Trends Biotechnol. 38 (2020) 1023-1033.
doi: 10.1016/j.tibtech.2020.02.009
G. De Bhowmick, A.K. Sarmah, R. Sen, Sci. Total Environ. 650 (2019) 2467-2482.
doi: 10.1016/j.scitotenv.2018.10.002
W.H. Chen, M.Y. Huang, J.S. Chang, C.Y. Chen, Bioresour. Technol. 169 (2014) 258-264.
doi: 10.1016/j.biortech.2014.06.086
V. Parnaudeau, M.F. Dignac, J. Anal. Appl. Pyrolysis 78 (2007) 140-152.
doi: 10.1016/j.jaap.2006.06.002
C. Yang, R. Li, B. Zhang, et al., Fuel Process. Technol. 186 (2019) 53-72.
doi: 10.1016/j.fuproc.2018.12.012
W. Chen, H. Yang, Y. Chen, et al., Environ. Sci. Technol. 51 (2017) 6570-6579.
doi: 10.1021/acs.est.7b00434
A.E. Pavlath, K.S. Gregorski, J. Anal. Appl. Pyrolysis 8 (1985) 41-48.
doi: 10.1016/0165-2370(85)80013-9
K.D. Maher, D.C. Bressler, Bioresour. Technol. 98 (2007) 2351-2368.
doi: 10.1016/j.biortech.2006.10.025
Y.D. Chen, X. Duan, C. Zhang, et al., Chem. Eng. J. 384 (2020) 123244.
doi: 10.1016/j.cej.2019.123244
K.D. Maher, K.M. Kirkwood, M.R. Gray, D.C. Bressler, Ind. Eng. Chem. Res. 47 (2008) 5328-5336.
doi: 10.1021/ie0714551
M. Atienzamartínez, J.F. Mastral, J. Ábrego, et al., Energy Fuels 29 (2015) 160-170.
doi: 10.1021/ef501425h
P. Manara, A. Zabaniotou, Renew. Sustain. Energy Rev. 16 (2012) 2566-2582.
doi: 10.1016/j.rser.2012.01.074
D.C. Li, J. Hong, Bioresour. Technol. 246 (2017) 57-68.
doi: 10.1016/j.biortech.2017.07.029
B. Maddi, S. Viamajala, S. Varanasi, Bioresour. Technol. 102 (2011) 11018-11026.
doi: 10.1016/j.biortech.2011.09.055
X. Dong, Z. Chen, S. Xue, et al., RSC Adv. 3 (2013) 25780-25787.
doi: 10.1039/c3ra43850c
S.H. Ho, Y.D. Chen, R. Li, et al., Water Res. 159 (2019) 77-86.
doi: 10.1016/j.watres.2019.05.008
H. Feng, Y. Jia, D. Shen, et al., Sci. Total Environ. 635 (2018) 45-52.
doi: 10.1016/j.scitotenv.2018.04.124
Y. Yuan, T. Yuan, D. Wang, et al., Bioresour. Technol. 144 (2013) 115-120.
doi: 10.1016/j.biortech.2013.06.075
H.M. Morgan, Q. Bu, J. Liang, et al., Bioresour. Technol. 230 (2017) 112-121.
doi: 10.1016/j.biortech.2017.01.059
K.L. Yu, W.H. Chen, H.K. Sheen, et al., Renew. Energy 156 (2020) 349-360.
doi: 10.1016/j.renene.2020.04.064
J. Li, J. Dai, G. Liu, et al., Biomass Bioenerg. 94 (2016) 228-244.
doi: 10.1016/j.biombioe.2016.09.010
R. Wahi, N.F.Q. Zuhaidi, Y. Yusof, et al., Biomass Bioenergy 107 (2017) 411-421.
doi: 10.1016/j.biombioe.2017.08.007
Y. Fernández, A. Arenillas, M.A. Díez, et al., J. Anal. Appl. Pyrolysis 84 (2009) 145-150.
doi: 10.1016/j.jaap.2009.01.004
Q.V. Bach, W.H. Chen, S.C. Lin, et al., Energy Convers. Manage.141 (2017) 163-170.
doi: 10.1016/j.enconman.2016.07.035
B. Patel, M. Guo, A. Izadpanah, et al., Bioresour. Technol.199 (2015) 288-299.
T. Mathimani, A. Baldinelli, K. Rajendran, et al., J. Clean. Prod. 208 (2019) 1053-1064.
doi: 10.1016/j.jclepro.2018.10.096
A.A. Peterson, F. Vogel, R.P. Lachance, et al., Energy Environ. Sci.1 (2008) 32-65.
doi: 10.1039/b810100k
C. Zhang, S.H. Ho, W.H. Chen, et al., Appl. Energy 220 (2018) 598-604.
doi: 10.1016/j.apenergy.2018.03.129
M. Rudolfsson, W. Stelte, T.A. Lestander, Appl. Energy 140 (2015) 378-384.
doi: 10.1016/j.apenergy.2014.11.041
Y.C. Chen, W.H. Chen, B.J. Lin, et al., Appl. Energy 181 (2016) 110-119.
doi: 10.1016/j.apenergy.2016.07.130
Y.W. Huang, M.Q. Chen, H.F. Luo, Chem. Eng. J. 298 (2016) 154-161.
doi: 10.1016/j.cej.2016.04.018
J. Klinger, E. Bar-Ziv, D. Shonnard, J. Anal. Appl. Pyrolysis 104 (2013) 146-152.
doi: 10.1016/j.jaap.2013.08.010
W.H. Chen, J.H. Peng, X.T.T. Bi, Renew. Sustain. Energy Rev. 44 (2015) 847-866.
doi: 10.1016/j.rser.2014.12.039
X. Xiao, Z. Chen, B. Chen, Sci. Rep. 6 (2016) 22644.
doi: 10.1038/srep22644
A.R. Zimmerman, Environ. Sci. Technol. 44 (2010) 1295-1301.
doi: 10.1021/es903140c
H.J. Cho, K. Baek, J.K. Jeon, et al., Chem. Eng. J. 217 (2013) 205-211.
doi: 10.1016/j.cej.2012.11.123
Z. Wan, Y. Sun, D.C.W. Tsang, et al., Green Chem. 22 (2020) 2688-2711.
doi: 10.1039/D0GC00717J
D. Saha, M.J. Kienbaum, Microporous Mesoporous Mater. 287 (2019) 29-55.
doi: 10.1016/j.micromeso.2019.05.051
C. Sun, T. Chen, Q. Huang, et al., Chem. Eng. J. 380 (2020) 122519.
doi: 10.1016/j.cej.2019.122519
H. Li, X. Dong, S.E. Da, et al., Chemosphere 178 (2017) 466-478.
doi: 10.1016/j.chemosphere.2017.03.072
X. Duan, C. Su, J. Miao, et al., Appl. Catal. B 220 (2018) 626-634.
doi: 10.1016/j.apcatb.2017.08.088
S.H. Ho, Y.D. Chen, Z.K. Yang, et al., Bioresour. Technol. 246 (2017) 142-149.
doi: 10.1016/j.biortech.2017.08.025
B.C. Huang, J. Jiang, G.-X. Huang, H.Q. Yu, J. Mater. Chem. A 6 (2018) 8978-8985.
doi: 10.1039/C8TA02282H
J.H. Lee, D.S. Kim, J.H. Yang, et al., Bioresour. Technol. 264 (2018) 387-390.
doi: 10.1016/j.biortech.2018.06.097
A.M. Abioye, F.N. Ani, Renew. Sustain Energy Rev. 52 (2015) 1282-1293.
doi: 10.1016/j.rser.2015.07.129
Y.M. Chang, W.T. Tsai, M.H. Li, J. Anal. Appl. Pyrolysis 111 (2015) 88-93.
doi: 10.1016/j.jaap.2014.12.004
S. Ding, Y. Liu, Fuel 260 (2020)116382.
doi: 10.1016/j.fuel.2019.116382
H. Jin, M.U. Hanif, S. Capareda, et al., J. Environ. Chem. Eng. 4 (2016) 365-372.
doi: 10.1016/j.jece.2015.11.022
M. Sevilla, G.A. Ferrero, A.B. Fuertes, Chem. Mater. 29 (2017) 6900-6907.
doi: 10.1021/acs.chemmater.7b02218
F. Guo, X. Jia, S. Liang, et al., Bioresour. Technol. 298 (2020) 122263.
doi: 10.1016/j.biortech.2019.122263
D. Hopkins, K. Hawboldt, J. Environ, Chem. Eng. 8 (2020) 103975.
J.H. Yuan, R.K. Xu, H. Zhang, Bioresour. Technol. 102 (2011) 3488-3497.
doi: 10.1016/j.biortech.2010.11.018
A.T. Tag, G. Duman, S. Ucar, J. Yanik, J. Anal. Appl. Pyrolysis 120 (2016) 200-206.
doi: 10.1016/j.jaap.2016.05.006
A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Renew. Sustain. Energy Rev. 58 (2016) 1189-1206.
doi: 10.1016/j.rser.2015.12.249
W.J. Liu, H. Jiang, H.Q. Yu, Energy Environ. Sci. 12 (2019) 1751-1779.
doi: 10.1039/C9EE00206E
L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38 (2009) 2520-2531.
doi: 10.1039/b813846j
Z. Meng, J. Catanach, J. Gomez, et al., ACS Appl. Mater. Interfaces 9 (2016) 4362.
M. Sevilla, W. Gu, C. Falco, et al., J. Power Sources 267 (2014) 26-32.
doi: 10.1016/j.jpowsour.2014.05.046
J. Li, K. Liu, X. Gao, et al., ACS Appl. Mater. Interfaces 7 (2015) 24622-24628.
doi: 10.1021/acsami.5b06698
Z. Wang, D.O. Carlsson, P. Tammela, et al., ACS Nano 9 (2015) 7563-7571.
doi: 10.1021/acsnano.5b02846
L. Wei, J. Zeng, X. Guo, J. Mater. Chem. A 5 (2017) 25282-25292.
doi: 10.1039/C7TA08095F
J. Zeng, L. Wei, X. Guo, J. Mater. Chem. A 5 (2017) 25282-25292.
doi: 10.1039/C7TA08095F
M. Zhou, J. Catanach, J. Gomez, et al., ACS Appl. Mater. Interfaces 9 (2017) 4362-4373.
doi: 10.1021/acsami.6b08328
S.E.M. Pourhosseini, O. Norouzi, P. Salimi, H.R. Naderi, ACS Sustain. Chem. Eng. 6 (2018) 4746-4758.
doi: 10.1021/acssuschemeng.7b03871
B. Zhu, B. Liu, C. Qu, et al., J. Mater. Chem. A 6 (2018) 1523-1530.
doi: 10.1039/C7TA09608A
J. Wang, Z. Li, S. Yan, et al., RSC Adv. 9 (2019) 14797-14808.
doi: 10.1039/C9RA01255A
S. Zhou, X. Kong, B. Zheng, et al., ACS Nano 13 (2019) 9578-9586.
doi: 10.1021/acsnano.9b04670
X. Wu, Z. Tian, L. Hu, et al., RSC Adv. 7 (2017) 32795-32805.
doi: 10.1039/C7RA05355J
F. Wang, L. Chen, H. Li, et al., Chin. Chem. Lett. 31 (2020) 1986-1990.
doi: 10.1016/j.cclet.2020.02.020
H. Chen, D. Liu, Z. Shen, et al., Electrochim. Acta 180 (2015) 241-251.
doi: 10.1016/j.electacta.2015.08.133
J. Wang, S. Kaskel, J. Mater. Chem. 22 (2012) 23710-23725.
doi: 10.1039/c2jm34066f
N. Zhang, X. Yan, J. Li, et al., Electrochim. Acta 226 (2017) 132-139.
doi: 10.1016/j.electacta.2016.12.192
J. Lee, K. Lee, D. Sohn, et al., Energy 153 (2018) 913-920.
doi: 10.1016/j.energy.2018.04.112
K.Y. Park, K. Lee, D. Kim, Bioresour. Technol. 258 (2018) 119-124.
doi: 10.1016/j.biortech.2018.03.003
M. Parsa, H. Jalilzadeh, M. Pazoki, et al., Bioresour. Technol. 250 (2017) 26-34.
R. Shakya, S. Adhikari, R. Mahadevan, et al., Bioresour. Technol. 243 (2017) 1112-1120.
doi: 10.1016/j.biortech.2017.07.046
W.H. Chen, M.Y. Huang, J.S. Chang, C.Y. Chen, Appl. Energy 154 (2015) 622-630.
doi: 10.1016/j.apenergy.2015.05.068
W.H. Chen, M.Y. Huang, J.S. Chang, et al., Bioresour. Technol.185 (2015) 285-293.
doi: 10.1016/j.biortech.2015.02.095
K.Y. Park, K. Lee, D. Kim, Bioresour. Technol. 258 (2018) 119-124.
doi: 10.1016/j.biortech.2018.03.003
M. Parsa, H. Jalilzadeh, M. Pazoki, et al., Bioresour. Technol. 250 (2018) 26-34.
doi: 10.1016/j.biortech.2017.10.059
Y. Hong, W. Chen, X. Luo, et al., Bioresour. Technol. 237 (2017) 47-56.
doi: 10.1016/j.biortech.2017.02.006
N. Phusunti, W. Phetwarotai, S. Tekasakul, Kor. J. Chem. Eng. 35 (2018) 503-510.
doi: 10.1007/s11814-017-0297-5
S. Fang, W. Gu, M. Dai, et al., Bioresour. Technol. 250 (2017) 821-827.
C. Zhang, C. Wang, G. Cao, et al., Fuel 246 (2019) 375-385.
doi: 10.1016/j.fuel.2019.02.139
Y.C. Chen, W.H. Chen, B.J. Lin, et al., Appl. Energy 181 (2016) 110-119.
doi: 10.1016/j.apenergy.2016.07.130
S.H. Ho, C. Zhang, W.H. Chen, et al., Bioresour. Technol. 264 (2018) 7-16.
doi: 10.1016/j.biortech.2018.05.047
E. Rosales, J. Meijide, M. Pazos, M.A. Sanromán, Bioresour. Technol. (2017) 176-192.
Z. Liu, D. Tian, F. Shen, et al., Chin. Chem. Lett. 30 (2019) 2221-2224.
doi: 10.1016/j.cclet.2019.04.016
X.F. Tan, S.B. Liu, Y.G. Liu, et al., Bioresour. Technol. 227 (2016) 359-372.
M.G. Plaza, C. Pevida, B. Arias, et al., Fuel 88 (2009) 2442-2447.
doi: 10.1016/j.fuel.2009.02.025
A.E. Creamer, B. Gao, Z. Ming, Chem. Eng. J. 249 (2014) 174-179.
doi: 10.1016/j.cej.2014.03.105
M.G. Plaza, A.S. González, J.J. Pis, et al., Appl. Energy 114 (2014) 551-562.
doi: 10.1016/j.apenergy.2013.09.058
S.B. Liaw, H.J.E. Wu, Fuels 29 (2015) 4407-4417.
doi: 10.1021/acs.energyfuels.5b01020
S. Gadipelli, X.G. Zheng, Prog. Mater. Sci. 69 (2015) 1-60.
doi: 10.1016/j.pmatsci.2014.10.004
A.E. Creamer, B. Gao, Environ. Sci. Technol. 50 (2016) 72-76.
J.J. Manyà, B. González, M. Azuara, G. Arner, Chem. Eng. J. 345 (2018) 631-639.
doi: 10.1016/j.cej.2018.01.092
Z. Xiong, S. Zhang, H. Yang, et al., Bioenergy Res. 6 (2013) 1147-1153.
doi: 10.1007/s12155-013-9304-9
K.M. Poo, E.B. Son, J.S. Chang, et al., J. Environ. Manage. 206 (2018) 364-372.
doi: 10.1016/j.jenvman.2017.10.056
E.B. Son, K.M. Poo, J.S. Chang, K.J. Chae, Sci. Total Environ. 615 (2018) 161-168.
doi: 10.1016/j.scitotenv.2017.09.171
E.B. Son, K.M. Poo, H.O. Mohamed, et al., Bioresour. Technol. 259 (2018) 381-387.
doi: 10.1016/j.biortech.2018.03.077
Y. Shen, H. Li, W. Zhu, et al., Bioresour. Technol. 244 (2017) 1031-1038.
doi: 10.1016/j.biortech.2017.08.085
P. Nautiyal, K.A. Subramanian, M.G. Dastidar, J. Environ. Manage. 182 (2016) 187-197.
doi: 10.1016/j.jenvman.2016.07.063
Y.D. Chen, Y.C. Lin, S.H. Ho, et al., Bioresour. Technol. 259 (2018) 104-110.
doi: 10.1016/j.biortech.2018.02.094
H. Zheng, W. Guo, S. Li, et al., Bioresour. Technol. 244 (2017) 1456-1464.
doi: 10.1016/j.biortech.2017.05.025
Y.K. Choi, T.R. Choi, R. Gurav, et al., Sci. Total Environ. 710 (2020) 136282.
doi: 10.1016/j.scitotenv.2019.136282
R. Gokulan, A. Avinash, G.G. Prabhu, J. Jegan, J. Environ. Chem. Eng. 7 (2019) 103297.
doi: 10.1016/j.jece.2019.103297
K.W. Jung, T.U. Jeong, H.J. Kang, et al., Bioresour. Technol. 214 (2016) 548-557.
doi: 10.1016/j.biortech.2016.05.005
K.W. Jung, T.U. Jeong, H.J. Kang, K.H. Ahn, Bioresour. Technol. 211 (2016) 108-116.
doi: 10.1016/j.biortech.2016.03.066
Y. Qi, B. Ge, Y. Zhang, et al., J. Hazard. Mater. 399 (2020) 123039.
doi: 10.1016/j.jhazmat.2020.123039
H. Wang, H. Wang, H. Zhao, Q. Yan, Chem. Eng. J. 379 (2020) 122372.
doi: 10.1016/j.cej.2019.122372
C. Chen, T. Ma, Y. Shang, et al., Appl. Catal. B 250 (2019) 382-395.
doi: 10.1016/j.apcatb.2019.03.048
S.-H. Ho, Y.-d. Chen, Z.-k. Yang, et al., Bioresour. Technol. 246 (2017) 142-149.
doi: 10.1016/j.biortech.2017.08.025
Y.Y. Wang, H.H. Lu, Y.X. Liu, S.M. Yang, RSC Adv. 6 (2016) 83534-83546.
doi: 10.1039/C6RA15532D
J. Arun, P. Varshini, P.K. Prithvinath, et al., Bioresour. Technol. 261 (2018) 182-187.
doi: 10.1016/j.biortech.2018.04.029
X. Cao, L. Ma, B. Gao, W. Harris, Environ. Sci. Technol. 43 (2009) 3285-3291.
doi: 10.1021/es803092k
L.P. Mazur, M.A.P. Cechinel, S.M. Souza, et al., J. Environ. Manage. 223 (2018) 215-253.
doi: 10.1016/j.jenvman.2018.05.086
T. Chen, Y. Zhang, H. Wang, et al., Bioresour. Technol. 164 (2014) 47-54.
doi: 10.1016/j.biortech.2014.04.048
B. Chen, D. Zhou, L. Zhu, Environ. Sci. Technol. 42 (2008) 5137-5143.
doi: 10.1021/es8002684
Z. Chen, B. Chen, C.T. Chiou, Environ. Sci. Technol. 46 (2012) 11104-11111.
doi: 10.1021/es302345e
M. Teixidó, J.J. Pignatello, J.L. Beltrán, et al., Environ. Sci. Technol. 45 (2011) 10020-10027.
doi: 10.1021/es202487h
S. Fan, Y. Wang, Z. Wang, et al., J. Environ. Chem. Eng. 5 (2017) 601-611.
doi: 10.1016/j.jece.2016.12.019
S. Wang, J. Wang, Chem. Eng. J. 356 (2019) 350-358.
doi: 10.1016/j.cej.2018.09.062
H. Zhang, Q. Ji, L. Lai, et al., Chin. Chem. Lett. 30 (2019) 1129-1132.
doi: 10.1016/j.cclet.2019.01.025
Y. Wang, H. Ji, W. Liu, et al., ACS Appl. Mater. Interfaces 12 (2020) 20522-20535.
doi: 10.1021/acsami.0c03481
J. Li, Y. Li, Z. Xiong, et al., Chin. Chem. Lett. 30 (2019) 2139-2146.
doi: 10.1016/j.cclet.2019.04.057
M. Zhu, L. Zhang, S. Liu, et al., Chin. Chem. Lett. 31 (2020) 1961-1965.
doi: 10.1016/j.cclet.2020.01.017
X. Duan, S. Indrawirawan, J. Kang, et al., Catal. Today (2019), doi: http://dx.doi.org/10.1016/j.cattod.2019.02.051.
G. Fang, J. Gao, D.D. Dionysiou, et al., Environ. Sci. Technol. 47 (2013) 4605-4611.
doi: 10.1021/es400262n
J. Wang, S. Wang, Chem. Eng. J. 334 (2018) 1502-1517.
doi: 10.1016/j.cej.2017.11.059
G. Liu, J. Zhou, W. Zhao, et al., Chin. Chem. Lett. 31 (2020) 1966-1969.
doi: 10.1016/j.cclet.2019.12.023
Z. Cai, A.D. Dwivedi, W.-N. Lee, et al., Environ. Sci. Nano 5 (2018) 27-47.
doi: 10.1039/C7EN00644F
Y.-d. Chen, S. Bai, R. Li, et al., Environ. Int. 126 (2019) 302-308.
doi: 10.1016/j.envint.2019.02.032
W. Tian, H. Zhang, X. Duan, et al., Adv. Funct. Mater. 30 (2020) 1909265.
doi: 10.1002/adfm.201909265
W. Ren, L. Xiong, G. Nie, et al., Environ. Sci. Technol. 54 (2020) 1267-1275.
doi: 10.1021/acs.est.9b06208
S. Zhu, X. Huang, F. Ma, et al., Environ. Sci. Technol. 52 (2018) 8649-8658.
doi: 10.1021/acs.est.8b01817
W. Ren, L. Xiong, X. Yuan, et al., Environ. Sci. Technol. 53 (2019) 14595-14603.
doi: 10.1021/acs.est.9b05475
F. Codignole Luz, S. Cordiner, A. Manni, et al., J. Environ. Chem. Eng. 6 (2018) 2892-2909.
doi: 10.1016/j.jece.2018.04.015
P. Godlewska, H.P. Schmidt, Y.S. Ok, P. Oleszczuk, Bioresour. Technol. 246 (2017) 193-202.
doi: 10.1016/j.biortech.2017.07.095
T. Lieke, X. Zhang, C.E.W. Steinberg, B. Pan, Environ. Sci. Technol. 52 (2018) 7981-7987.
doi: 10.1021/acs.est.8b01338
D.U. Tischner, How to Do EcoDesign? A Guide for Environmentally and Economically Sound Design, Verlag form, Frankfurt am Main, 2000.
A.C. Hetherington, A.L. Borrion, O.G. Griffiths, M.C. Mcmanus, Int. J. Life Cycle Assess. 19 (2013) 130-143.
Chong Liu , Nanthi Bolan , Anushka Upamali Rajapaksha , Hailong Wang , Paramasivan Balasubramanian , Pengyan Zhang , Xuan Cuong Nguyen , Fayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
Junqi Wang , Shuai Zhang , Jingjing Ma , Xiangjun Liu , Yayun Ma , Zhimin Fan , Jingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725
Yun-Xin Huang , Lin-Qian Yu , Ke-Yu Chen , Hao Wang , Shou-Yan Zhao , Bao-Cheng Huang , Ren-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437
Haitao Yin , Liang Meng , Li Li , Jiamu Xiao , Longrui Liang , Nannan Huang , Yansong Shi , Angang Zhao , Jingwen Hou . Polydopamine-modified biochar supported polylactic acid and zero-valent iron affects the functional microbial community structure for 1,1,1-trichloroethane removal in simulated groundwater. Chinese Chemical Letters, 2025, 36(1): 110313-. doi: 10.1016/j.cclet.2024.110313
Shili Wang , Mamitiana Roger Razanajatovo , Xuedong Du , Shunli Wan , Xin He , Qiuming Peng , Qingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140