Applications of metal–organic framework composites in CO2 capture and conversion
* Corresponding author.
E-mail address: zhli99@mail.sysu.edu.cn (L.Zhang).
Citation: Jiewei Liu, Chunying Chen, Kun Zhang, Li Zhang. Applications of metal–organic framework composites in CO2 capture and conversion[J]. Chinese Chemical Letters, ;2021, 32(2): 649-659. doi: 10.1016/j.cclet.2020.07.040
L. Zhang, J. Liu, C.Y. Su, Application of metal-organic frameworks in CO2 capture and conversion, in: K.T. Mahmudov, M.N. Kopylovich, M.F.C.G. Silva, A. J.L. Pombeiro (Eds.), Noncovalent Interactions in Catalysis, The Royal Society of Chemistry, 2019, pp. 455-478.
Z. Chen, J. Liu, H. Cui, L. Zhang, C.Y. Su, Acta Chim. Sinica 77 (2019) 242-252.
doi: 10.6023/A18100440
M. Ding, R.W. Flaig, H.L. Jiang, O.M. Yaghi, Chem. Soc. Rev. 48 (2019) 2783-2828.
doi: 10.1039/C8CS00829A
C.A. Trickett, A. Helal, B.A. Al-Maythalony, et al., Nat. Rev. Mater. 2 (2017) 17045.
doi: 10.1038/natrevmats.2017.45
J.W. Maina, C. Pozo-Gonzalo, L. Kong, et al., Mater. Horiz. 4 (2017) 345-361.
doi: 10.1039/C6MH00484A
(a) H. He, J.A. Perman, G. Zhu, S. Ma, Small 12 (2016) 6309-6324;
(b) B. Yu, B. Zou, C.W. Hu, J. CO2 Util. 26 (2018) 314-322;
(c) K.H. Chen, H.R. Li, L.N. He, Chin. J. Org. Chem. (2020), doi: http://dx.doi.org/10.6023/cjoc202004030.
Y. Shi, S. Hou, X. Qiu, B. Zhao, Topics Curr. Chem. 378 (2020) 11.
doi: 10.1007/s41061-019-0269-9
A. Álvarez, A. Bansode, A. Urakawa, et al., Chem. Rev. 117 (2017) 9804-9838.
doi: 10.1021/acs.chemrev.6b00816
D. Li, M. Kassymova, X. Cai, S.Q. Zang, H.L. Jiang, Coord. Chem. Rev. 412 (2020) 213262.
doi: 10.1016/j.ccr.2020.213262
R. Wang, F. Kapteijn, J. Gascon, Chem. Asian J. 14 (2019) 3452-3461.
doi: 10.1002/asia.201900710
S. Xie, Q. Zhang, G. Liu, Y. Wang, Chem. Commun. 52 (2016) 35-59.
doi: 10.1039/C5CC07613G
S.L. Hou, J. Dong, B. Zhao, Adv. Mater. (2019) 1806163.
J. Liu, L. Chen, H. Cui, et al., Chem. Soc. Rev. 43 (2014) 6011-6061.
doi: 10.1039/C4CS00094C
X. Liang, L. Chen, L. Zhang, C.Y. Su, Chin. Sci. Bull. 63 (2018) 248-265.
doi: 10.1360/N972017-00949
L. Zhang, J. Liu, C.Y. Su, Porphyrin metal-organic frameworks in heterogeneous supramolecular catalysis, in: L. Wang, C.Y. Su (Eds.), Supramolecular Catalysts: Design, Fabrication, and Applications, World Scientific Publishing Co. Pte Ltd., 2020, pp. 225-265.
A. Bavykina, N. Kolobov, I.S. Khan, et al., Chem. Rev. 120 (2020) 8468-8535.
doi: 10.1021/acs.chemrev.9b00685
G. Li, S. Zhao, Y. Zhang, Z. Tang, Adv. Mater. (2018) 1800702.
Q. Yang, Q. Xu, H.L. Jiang, Chem. Soc. Rev. 46 (2017) 4774-4808.
doi: 10.1039/C6CS00724D
L. Chen, Q. Xu, Matter 1 (2019) 57-89.
doi: 10.1016/j.matt.2019.05.018
(a) B. Li, J.G. Ma, P. Cheng, Small (2019) 1804849;
(b) L. Chen, X. Zhang, X. Cheng, et al., Nanosc. Adv. 2 (2020) 2628-2647;
(c) T. Wu, X. Liu, Y. Liu, et al., Coord. Chem. Rev. 403 (2020) 213097;
(d) Q.L. Zhu, Q. Xu, Chem. Soc. Rev. 43 (2014) 5468-5512.
M. Ding, H.L. Jiang, ACS Catal. 8 (2018) 3194-3201.
doi: 10.1021/acscatal.7b03404
B. Aguila, Q. Sun, X. Wang, et al., Angew. Chem. Int. Ed. 57 (2018) 10107-10111.
doi: 10.1002/anie.201803081
G.G. Chang, X.C. Ma, Y.X. Zhang, et al., Adv. Mater. (2019) 1904969.
D. Chen, R. Luo, M. Li, et al., Chem. Commun. 53 (2017) 10930-10933.
doi: 10.1039/C7CC06522A
C. Liu, X.H. Liu, B. Li, et al., J. Energy Chem. 26 (2017) 821-824.
doi: 10.1016/j.jechem.2017.07.022
L.J. Gooßen, N. Rodríguez, F. Manjolinho, P.P. Lange, Adv. Synth. Catal. 352 (2010) 2913-2917.
doi: 10.1002/adsc.201000564
F. Manjolinho, M. Arndt, K. Gooßen, L.J. Gooßen, ACS Catal. 2 (2012) 2014-2021.
doi: 10.1021/cs300448v
X.H. Liu, J.G. Ma, Z. Niu, G.M. Yang, P. Cheng, Angew. Chem. Int. Ed. 54 (2015) 988-991.
doi: 10.1002/anie.201409103
L. Sun, Y. Yun, H. Sheng, et al., J. Mater. Chem. A 6 (2018) 15371-15376.
doi: 10.1039/C8TA04667K
J. Shi, L. Zhang, N. Sun, et al., ACS Appl. Mater. Interfaces 11 (2019) 28858-28867.
doi: 10.1021/acsami.9b07991
R.A. Molla, K. Ghosh, B. Banerjee, et al., J. Colloid Interf. Sci. 477 (2016) 220-229.
doi: 10.1016/j.jcis.2016.05.037
M. Trivedi, Bhaskaran, A. Kumar, et al., New J. Chem. 40 (2016) 3109-3118.
doi: 10.1039/C5NJ02630J
N.N. Zhu, X.H. Liu, T. Li, et al., Inorg. Chem. 56 (2017) 3414-3420.
doi: 10.1021/acs.inorgchem.6b02855
G. Dutta, A.K. Jana, D.K. Singh, M. Eswaramoorthy, S. Natarajan, Chem. Asian J. 13 (2018) 2677-2684.
doi: 10.1002/asia.201800815
M. Behrens, F. Studt, I. Kasatkin, et al., Science 336 (2012) 893-897.
doi: 10.1126/science.1219831
B. Rungtaweevoranit, J. Baek, J.R. Araujo, et al., Nano Lett. 16 (2016) 7645-7649.
doi: 10.1021/acs.nanolett.6b03637
B. An, J. Zhang, K. Cheng, et al., J. Am. Chem. Soc. 139 (2017) 3834-3840.
doi: 10.1021/jacs.7b00058
W. Zhang, L. Wang, K. Wang, et al., Small 7 (2017) 1602583.
Z. Li, T.M. Rayder, L. Luo, J.A. Byers, C.K. Tsung, J. Am. Chem. Soc. 140 (2018) 8082-8085.
doi: 10.1021/jacs.8b04047
W. Zhen, B. Li, G. Lu, J. Ma, Chem. Commun. 51 (2015) 1728-1731.
doi: 10.1039/C4CC08733J
W. Zhen, F. Gao, B. Tian, et al., J. Catal. 348 (2017) 200-211.
doi: 10.1016/j.jcat.2017.02.031
Z.W. Zhao, X. Zhou, Y.N. Liu, et al., Catal. Sci. Technol. 8 (2018) 3160-3165.
doi: 10.1039/C8CY00468D
F. Guo, Y.P. Wei, S.Q. Wang, et al., J. Mater. Chem. A 7 (2019) 26490-26495.
doi: 10.1039/C9TA10575A
D. Sun, W. Liu, Y. Fu, et al., Chem. Eur. J. 20 (2014) 4780-4788.
doi: 10.1002/chem.201304067
M. Choi, D. Kim, B. Rungtaweevoranit, et al., J. Am. Chem. Soc. 139 (2017) 356-362.
doi: 10.1021/jacs.6b11027
F. Guo, S. Yang, Y. Liu, et al., ACS Catal. 9 (2019) 8464-8470.
doi: 10.1021/acscatal.9b02126
C. Li, Y. Wang, F. Yu, X. Shen, C. Duan, J. Mater. Chem. A 7 (2019) 11355-11361.
doi: 10.1039/C9TA01840A
S.M. Liu, Z. Zhang, X. Li, et al., Adv. Mater. Interfaces 5 (2018) 1801062.
doi: 10.1002/admi.201801062
X. Wang, F.M. Wisser, J. Canivet, M. Fontecave, C. Mellot-Draznieks, ChemSusChem 11 (2018) 3315-3322.
doi: 10.1002/cssc.201801066
Z.H. Yan, B. Ma, S.R. Li, et al., Sci. Bulletin 64 (2019) 976-985.
doi: 10.1016/j.scib.2019.05.014
Z.C. Kong, J.F. Liao, Y.J. Dong, et al., ACS Energy Lett. 3 (2018) 2656-2662.
doi: 10.1021/acsenergylett.8b01658
L.Y. Wu, Y.F. Mu, X.X. Guo, et al., Angew. Chem. Int. Ed. 58 (2019) 9491-9495.
doi: 10.1002/anie.201904537
Q. Liu, Y. Zhou, J. Kou, et al., J. Am. Chem. Soc. 132 (2010) 14385-14387.
doi: 10.1021/ja1068596
N. Zhang, S. Ouyang, P. Li, et al., Chem. Commun. 47 (2011) 2041-2043.
doi: 10.1039/c0cc04687f
J. Zhao, Y. Wang, Y.X. Li, X. Yue, C.Y. Wang, Catal. Sci. Technol. 6 (2016) 7967-7975.
doi: 10.1039/C6CY01365A
Q. Liu, Z.X. Low, L. Li, et al., J. Mater. Chem. A 1 (2013) 11563-11569.
doi: 10.1039/c3ta12433a
H. Zhao, X. Wang, J. Feng, et al., Catal. Sci. Technol. 8 (2018) 1288-1295.
doi: 10.1039/C7CY02286G
K.M. Cho, K.H. Kim, K. Park, et al., ACS Catal. 7 (2017) 7064-7069.
doi: 10.1021/acscatal.7b01908
J. Jin, J. Yu, D. Guo, C. Cui, W. Ho, Small 11 (2015) 5262-5271.
doi: 10.1002/smll.201500926
C. Chen, T. Wu, H. Wu, et al., Chem. Sci. 9 (2018) 8890-8894.
doi: 10.1039/C8SC02809E
H. Chen, C.E. Nanayakkara, V.H. Grassian, Chem. Rev. 112 (2012) 5919-5948.
doi: 10.1021/cr3002092
M. Wang, D. Wang, Z. Li, Appl. Catal. B 183 (2016) 47-52.
doi: 10.1016/j.apcatb.2015.10.037
S. Yan, S. Ouyang, H. Xu, et al., J. Mater. Chem. A 4 (2016) 15126-15133.
doi: 10.1039/C6TA04620G
X. Chen, J. Zhang, X. Fu, M. Antonietti, X. Wang, J. Am. Chem. Soc. 131 (2009) 11658-11659.
doi: 10.1021/ja903923s
Z. Lin, X. Wang, Angew. Chem. Int. Ed. 52 (2013) 1735-1738.
doi: 10.1002/anie.201209017
S. Yang, Y. Gong, J. Zhang, et al., Adv. Mater. 25 (2013) 2452-2456.
doi: 10.1002/adma.201204453
P. Niu, L. Zhang, G. Liu, H.M. Cheng, Adv. Funct. Mater. 22 (2012) 4763-4770.
doi: 10.1002/adfm.201200922
X. Lu, K. Xu, P. Chen, et al., J. Mater. Chem. A 2 (2014) 18924-18928.
doi: 10.1039/C4TA04487H
L. Shi, T. Wang, H. Zhang, K. Chang, J. Ye, Adv. Funct. Mater. 25 (2015) 5360-5367.
doi: 10.1002/adfm.201502253
Y. Wang, W. Zhen, Y. Zeng, et al., J. Mater. Chem. A 8 (2020) 6034-6040.
doi: 10.1039/C9TA14005K
X. Wang, X. Zhao, D. Zhang, G. Li, H. Li, Appl. Catal. B 228 (2018) 47-53.
doi: 10.1016/j.apcatb.2018.01.066
N. Sadeghi, S. Sharifnia, T.O. Do, J. Mater. Chem. A 6 (2018) 18031-18035.
doi: 10.1039/C8TA07158F
X. Jiang, H. Wu, S. Chang, et al., J. Mater. Chem. A 5 (2017) 19371-19377.
doi: 10.1039/C7TA06114E
X. Tian, C. Yu, C. Zhao, et al., ACS Appl. Mater. Interfaces 11 (2019) 9904-9910.
doi: 10.1021/acsami.8b19111
H. Atzkern, B. Huber, F.H. Kohler, G. Müller, R. Müller, Organometallics 10 (1991) 238-244.
doi: 10.1021/om00047a055
Z. Xin, Y.R. Wang, Y. Chen, et al., Nano Energy 67 (2020) 104233.
doi: 10.1016/j.nanoen.2019.104233
J.C. Cardoso, S. Stulp, J.F.D. Brito, et al., Appl. Catal. B 225 (2018) 563-573.
doi: 10.1016/j.apcatb.2017.12.013
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
Xingxing Jiang , Yuxin Zhao , Yan Kong , Jianju Sun , Shangzhao Feng , Xin Lu , Qi Hu , Hengpan Yang , Chuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555
Qian-Qian Tang , Li-Fang Feng , Zhi-Peng Li , Shi-Hao Wu , Long-Shuai Zhang , Qing Sun , Mei-Feng Wu , Jian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Ruowen Liang , Chao Zhang , Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211
Weichen WANG , Chunhua GONG , Junyong ZHANG , Yanfeng BI , Hao XU , Jingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2024.100193
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Tinghui Yang , Min Kuang , Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350