A leap forward in sulfonium salt and sulfur ylide chemistry
* Corresponding authors.
E-mail addresses: weiyun@mail.buct.edu.cn (Y. Wei), tanjj@mail.buct.edu.cn (J. Tan), yhiroto@hiroshima-u.ac.jp (H. Yoshida).
Citation: Rong Fan, Chen Tan, Yongguo Liu, Yun Wei, Xiaowen Zhao, Xinyuan Liu, Jiajing Tan, Hiroto Yoshida. A leap forward in sulfonium salt and sulfur ylide chemistry[J]. Chinese Chemical Letters, ;2021, 32(1): 299-312. doi: 10.1016/j.cclet.2020.06.003
(a) R.J. Cremlyn, An Introduction to Organosulfur Chemistry, John Wiley & Sons, Hoboken, 1996;
(b) P.C.B. Page, Organosulfur Chemistry I., Springer, Heidelberg, 1999;
(c) C.M. Rayner, Advances in Sulfur Chemistry, JAI Press, Greenwich, 2000;
(d) A.Q. Acton, Sulfur Compounds: Advances in Research and Application, Scholarly Editions, Atlanta, 2012.
(a) E.A. Ilardi, E. Vitaku, J.T. Njardarson, J. Med. Chem. 57(2014) 2832-2842;
(b) B.R. Smith, C.M. Eastman, J.T. Njardarson, J. Med. Chem. 57(2014) 9764-9773.
(a) K.L. Dunbar, D.H. Scharf, A. Litomska, C. Hertweck, Chem. Rev. 117(2017) 5521-5577;
(b) M.H. Feng, B.Q. Tang, S. Liang, X.F. Jiang, Curr. Top. Med. Chem. 16(2016) 1200-1216.
(a) L.D. Wang, W. He, Z.K. Yu, Chem. Soc. Rev. 42(2013) 599-621;
(b) S.G. Modha, V.P. Mehta, E.V. Van der Eycken, Chem. Soc. Rev. 42(2013) 5042-5055;
(c) D. Kaiser, I. Klose, R. Oost, et al., Chem. Rev. 119(2019) 8701-8780.
(a) A.W. Johnson, R.B. Lacount, J. Am. Chem. Soc. 83(1961) 417-423;
(b) E.J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 84(1962) 867-868;
(c) S.Q. Guo, N.N. Zhang, X.Z. Tang, et al., Chin. Chem. Lett. 30(2019) 406-408.
L. Kurti, B. Czako, Strategic Applications of Named Reactions in Organic Synthesis, Elsevier, Burlington, 2005, pp. 294-295.
(a) R. Oost, R.J.D. Neuhaus, J. Merad, N. Maulide, Sulfur Ylides in Organic Synthesis and Transition Metal Catalysis, Structure and Bonding, Springer, Berlin, Heidelberg, 2017;
(b) J.D. Neuhaus, R. Oost, J. Merad, N. Maulide, Top. Curr. Chem. 376(2018) 15;
(c) L.Q. Lu, T.R. Li, Q. Wang, W.J. Xiao, Chem. Soc. Rev. 46(2017) 4135-4149;
(d) M. Mondal, S. Chen, N.J. Kerrigan, Molecules 23(2018) 738-767;
(e) F. Pan, Z.J. Shi, ACS Catal. 4(2014) 280-288;
(f) K. Gao, S. Otsuka, A. Baralle, et al., J. Synth. Org. Chem. Jpn. 74(2016) 1119-1127;
(g) D.H. Ortgies, A. Hassanpour, F. Chen, et al., Eur. J. Org. Chem. 2016(2016) 408-425;
(h) S. Otsuka, K. Nogi, H. Yorimitsu, Top. Curr. Chem. 376(2018) 13;
(i) P. Chauhan, S. Mahajan, D. Enders, Chem. Rev. 114(2014) 8807-8864.
(a) T.J. Colacot, New Trends in Cross-Coupling: Theory and Applications, 4th. ed., Royal Society of Chemistry, British, 2014;
(b) Á. Molnár, Palladium-Catalyzed Coupling Reactions: Practical Aspects and Future Developments, Wiley-VCH, Weinheim, Germany, 2013;
(c) M.L. Crawley, B.M. Trost, Applications of Transition Metal Catalysis in Drug Discovery and Development, Wiley, New York, 2012;
(d) J.J. Tan, Y.G. Chen, H.M. Li, N. Yasuda, J. Org. Chem. 79(2014) 8871-8876.
J. Srogl, G.D. Allred, L.S. Liebeskind, J. Am. Chem. Soc. 119(1997) 12376-12377.
doi: 10.1021/ja9726926
(a) Z.Y. Tian, Y.T. Hu, H.B. Teng, C.P. Zhang, Tetrahedron 59(2018) 299-309;
(b) S.M. Wang, H.X. Song, X.Y. Wang, et al., Chem. Commun. (Camb. ) 52(2016) 11893-11896;
(c) S.M. Wang, X.Y. Wang, H.L. Qin, C.P. Zhang, Chem. Eur. J. 22(2016) 6542-6546;
(d) Z.Y. Tian, S.M. Wang, S.J. Jia, et al., Org. Lett. 19(2017) 5454-5457;
(e) Z.Y. Tian, C.P. Zhang, Chem. Commun. (Camb. ) 55(2019) 11936-11939;
(f) X.Y. Wang, H.X. Song, S.M. Wang, et al., Tetrahedron 72(2016) 7606-7612.
(a) D. Uno, H. Minami, S. Otsuka, et al., Chem. Asian J. 13(2018) 2397-2400;
(b) H. Minami, K. Nogi, H. Yorimitsu, Org. Lett. 21(2019) 2518-2522;
(c) H. Minami, S. Otsuka, K. Nogi, H. Yorimitsu, ACS Catal. 8(2018) 579-583.
D.C. Simkó, P. Elekes, V. Pázmándi, Z. Novák, Org. Lett. 20(2018) 676-679.
doi: 10.1021/acs.orglett.7b03813
P. Cowper, Y. Jin, M.D. Turton, et al., Angew. Chem. Int. Ed. 55(2016) 2564-2568.
doi: 10.1002/anie.201510666
M.H. Aukland, F.J.T. Talbot, J.A. Fernández-Salas, et al., Angew. Chem. Int. Ed. 57(2018) 9785-9789.
doi: 10.1002/anie.201805396
(a) D. Ravelli, S. Protti, M. Fagnoni, Chem. Rev. 116(2016) 9850-9913;
(b) Q.Q. Zhou, Y.Q. Zou, L.Q. Lu, W.J. Xiao, Angew. Chem. Int. Ed. 58(2019) 1586-1604;
(c) N.A. Romero, D.A. Nicewicz, Chem. Rev. 116(2016) 10075-10166.
I. Ghosh, L. Marzo, A. Das, et al., Acc. Chem. Res. 49(2016) 1566-1577.
doi: 10.1021/acs.accounts.6b00229
S. Donck, A. Baroudi, L. Fensterbank, et al., Adv. Synth. Catal. 355(2013) 1477-1482.
doi: 10.1002/adsc.201300040
S. Otsuka, K. Nogi, T. Rovis, H. Yorimitsu, Chem. Asian J. 14(2019) 532-536.
doi: 10.1002/asia.201801732
(a) F. Berger, M.B. Plutschack, J. Riegger, et al., Nature 567(2019) 223-228;
(b) J.K. Li, J.T. Chen, R.C. Sang, et al., Nat. Chem. 12(2020) 56-62;
(c) P.S. Engl, A.P. Häring, F. Berger, et al., J. Am. Chem. Soc. 141(2019) 13346-13351;
(d) F. Ye, F. Berger, H. Jia, et al., Angew. Chem. Int. Ed. 58(2019) 14615-14619;
(e) R.C. Sang, S.E. Korkis, W.Q. Su, et al., Angew. Chem. Int. Ed. 58(2019) 16161-16166.
C. Huang, J. Feng, R. Ma, et al., Org. Lett. 21(2019) 9688-9692.
doi: 10.1021/acs.orglett.9b03850
S. Rohrbach, A.J. Smith, J.H. Pang, et al., Angew. Chem. Int. Ed. 58(2019) 16368-16388.
doi: 10.1002/anie.201902216
(a) V. Bernard-Gauthier, T.L. Collier, S.H. Liang, N. Vasdev, Drug Discov. Today Technol. 25(2017) 19-26;
(b) G. Pascali, L. Matesic, B. Zhang, et al., EJNMMI Radiopharm. Chem. 2(2017) 9-26.
(a) L.J. Mu, C.R. Fischer, J.P. Holland, et al., Eur. J. Org. Chem. 2012(2012) 889-892;
(b) K. Sander, T. Gendron, E. Yiannaki, et al., Sci. Rep. 5(2015) 9941-9945.
T. Gendron, K. Sander, K. Cybulska, et al., J. Am. Chem. Soc. 140(2018) 11125-11132.
doi: 10.1021/jacs.8b06730
P. Xu, D. Zhao, F. Berger, et al., Angew. Chem. Int. Ed. 59(2020) 1956-1960.
doi: 10.1002/anie.201912567
(a) X.X. Ming, Z.Y. Tian, C.P. Zhang, Chem. Asian J. 14(2019) 3370-3379;
(b) Z.Y. Tian, X.X. Ming, H.B. Teng, et al., Chem. Eur. J. 24(2018) 13744-13748.
J.N. Zhao, M. Kayumov, D.Y. Wang, A. Zhang, Org. Lett. 21(2019) 7303-7306.
doi: 10.1021/acs.orglett.9b02584
(a) Y.F. Liu, X.X. Shao, P.P. Zhang, et al., Org. Lett. 17(2015) 2752-2755;
(b) J.S. Zhu, Y.F. Liu, Q.L. Shen, Angew. Chem. Int. Ed. 55(2016) 9050-9054;
(c) Y.F. Liu, L. Lu, Q.L. Shen, Angew. Chem. Int. Ed. 56(2017) 9930-9934.
(a) C.F. Ni, M.Y. Hu, J.B. Hu, Chem. Rev. 115(2015) 765-825;
(b) C. Zhang, Org. Biomol. Chem. 12(2014) 6580-6589;
(c) S. Barata-Vallejo, B. Lantaño, A. Postigo, Chem. Eur. J. 20(2014) 16806-16829;
(d) G.K. Liu, X. Li, W.B. Qin, et al., Chin. Chem. Lett. 30(2019) 1515-1518.
S. Verhoog, C.W. Kee, Y.L. Wang, et al., J. Am. Chem. Soc. 140(2018) 1572-1575.
doi: 10.1021/jacs.7b10227
(a) B. Waldecker, F. Kraft, C. Golz, M. Alcarazo, Angew. Chem. Int. Ed. 57(2018) 12538-12542;
(b) X.D. Li, C. Golz, M. Alcarazo, Angew. Chem. Int. Ed. 58(2019) 9496-9500.
(a) Y. Xia, D. Qiu, J.B. Wang, Chem. Rev. 117(2017) 13810-13889;
(b) M.P. Doyle, R. Duffy, M. Ratnikov, L. Zhou, Chem. Rev. 110(2010) 704-724;
(c) Q.Q. Cheng, M.P. Doyle, Adv. Organomet. Chem. 66(2016) 1-31;
(d) Z.F. Liu, X.F. Yue, Q. Wei, K.L. Han, Chin. Chem. Lett. 18(2007) 107-110.
(a) Z. Sheng, Z.K. Zhang, C.H. Chu, et al., Tetrahedron 73(2017) 4011-4022;
(b) X.Y. Wang, X. Wang, J.B. Wang, Tetrahedron 75(2019) 949-964;
(c) Z.K. Zhang, Z. Sheng, W.Z. Yu, et al., Nat. Chem. 9(2017) 970-976.
(a) X.H. Liu, H.F. Zheng, Y. Xia, et al., Acc. Chem. Res. 50(2017) 2621-2631;
(b) X.B. Lin, Y. Tang, W. Yang, et al., J. Am. Chem. Soc. 140(2018) 3299-3305;
(c) X. Lin, W. Yang, W.K. Yang, et al., Angew. Chem. Int. Ed. 58(2019) 13492-13498.
L.K. Meng, P. Wu, J. Fang, et al., J. Am. Chem. Soc. 141(2019) 11775-11780.
doi: 10.1021/jacs.9b04619
(a) X.F. Xu, C. Li, Z.H. Tao, Y.J. Pan, Green Chem. 19(2017) 1245-1249;
(b) X.F. Xu, C. Li, M.T. Xiong, et al., Chem. Commun. (Camb. ) 53(2017) 6219-6222;
(c) X.J. Yan, C. Li, X.F. Xu, et al., Tetrahedron 75(2019) 3081-3087.
(a) R. Hommelsheim, Y.J. Guo, Z. Yang, et al., Angew. Chem. Int. Ed. 58(2019) 1203-1207;
(b) S. Jana, Z. Yang, C. Pei, et al., Chem. Sci. 10(2019) 10129-10134;
(c) Z. Yang, Y.J. Guo, R.M. Koenigs, Chem. Eur. J. 25(2019) 6703-6706;
(d) S. Jana, R.M. Koenigs, Asian J. Org. Chem. 8(2019) 683-686;
(e) C. Empel, R.M. Koenigs, J. Flow Chem. 10(2020) 157-160.
J.H. Yang, J.Z. Wang, H.T. Huang, et al., Org. Lett. 21(2019) 2654-2657.
doi: 10.1021/acs.orglett.9b00647
K. Orłowska, K. Rybicka-Jasinska, P. Krajewski, D. Gryko, Org. Lett. 22(2020) 1018-1021.
doi: 10.1021/acs.orglett.9b04560
(a) J.R. Shi, Y.Y. Li, Y. Li, Chem. Soc. Rev. 46(2017) 1707-1719;
(b) T. Roy, A.T. Biju, Chem. Commun. (Camb. ) 54(2018) 2580-2594;
(c) T. Matsuzawa, S. Yoshida, T. Hosoya, Tetrahedron Lett. 59(2018) 4197-4208;
(d) Y.W. Zeng, J.B. Hu, Synthesis 48(2016) 2137-2150;
(e) H. Yoshida, K. Takaki, Synlett 23(2012) 1725-1732;
(f) D.B. Werz, A.T. Biju, Angew. Chem. Int. Ed. 59(2020) 3385-3398.
(a) J.H. Chen, V. Palani, T.R. Hoye, J. Am. Chem. Soc. 138(2016) 4318-4321;
(b) X. Xiao, T.R. Hoye, Nat. Chem. Biol. 10(2018) 838-844;
(c) S.P. Ross, T.R. Hoye, Nat. Chem. Biol. 9(2017) 523-530.
Y.M. Li, C. Mück-Lichtenfeld, A. Studer, Angew. Chem. Int. Ed. 55(2016) 14435-14438.
doi: 10.1002/anie.201608144
(a) X.B. Xu, Z.H. Lin, Y.Y. Liu, et al., Org. Biomol. Chem. 15(2017) 2716-2720;
(b) M. Thangaraj, R.N. Gaykar, T. Roy, A.T. Biju, J. Org. Chem. 82(2017) 4470-4476;
(c) J.J. Tan, T.Y. Zheng, K. Xu, C.Y. Liu, Org. Biomol. Chem. 15(2017) 4946-4950.
T.Y. Zheng, J.J. Tan, R. Fan, et al., Chem. Commun. (Camb. ) 54(2018) 1303-1306.
doi: 10.1039/C7CC08553B
(a) R. Fan, B.B. Liu, T.Y. Zheng, et al., Chem. Commun. (Camb. ) 54(2018) 7081-7084;
(b) H. Jian, Q. Wang, W.H. Wang, et al., Tetrahedron 74(2018) 2876-2883.
W.H. Ding, A.M. Yu, L. Zhang, X.T. Meng, Org. Lett. 21(2019) 9014-9018.
doi: 10.1021/acs.orglett.9b03417
(a) F.L. Liu, J.R. Chen, Y.Q. Zou, Q. Wei, W.J. Xiao, Org. Lett. 16(2014) 3768-3771;
(b) H.Y. Li, L.J. Xing, M.M. Lou, et al., Org. Lett. 17(2015) 1098-1101;
(c) H. Hazatika, K. Neog, A. Sharma, et al., J. Org. Chem. 84(2019) 5846-5854;
(d) Y.M. Li, A. Studer, Org. Lett. 19(2017) 666-669;
(e) Y.Y. Li, D.C. Qiu, R.R. Gu, et al., J. Am. Chem. Soc. 138(2016) 10814-10817;
(f) X.J. Li, Y. Sun, X. Huang, et al., Org. Lett. 19(2017) 838-841;
(g) T. Matsuzawa, K. Uchida, S. Yoshida, T. Hosoya, Org. Lett. 19(2017) 5521-5524;
(h) D.L. Chen, Y. Sun, M.Y. Chen, et al., Org. Lett. 21(2019) 3986-3989.
(a) X.H. Ye, J. Wang, S.T. Ding, et al., Chem. Eur. J. 23(2017) 10506-10510;
(b) J. Wang, S.Y. Zhang, C. Xu, et al., Angew. Chem. Int. Ed. 57(2018) 6915-6920.
A. Parodi, S. Battaglioli, Y. Liu, et al., Chem. Commun. (Camb. ) 55(2019) 9669-9672.
doi: 10.1039/C9CC04302K
Z.Q. He, F.F. Song, H. Sun, Y. Huang, J. Am. Chem. Soc. 140(2018) 2693-2699.
doi: 10.1021/jacs.8b00380
M.T. Taylor, J.E. Nelson, M.G. Suero, M.J. Gaunt, Nature 562(2018) 563-568.
doi: 10.1038/s41586-018-0608-y
(a) D.Y. Qian, J.W. Sun, Chem. Eur. J. 25(2019) 3740-3751;
(b) V. Iaroshenko, Organophosphorus Chemistry: From Molecules to Applications, Wiley-VCH, Weinheim, 2019;
(c) A. Golandaj, A. Ahmad, D. Ramjugernath, Adv. Synth. Catal. 359(2017) 3676-3706;
(d) K. Ishihara, Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 85(2009) 290-313;
(e) C.Q. He, C.C. Lam, P.Y. Yu, et al., J. Org. Chem. 85(2020) 2618-2625;
(f) T. Nakamura, K. Okuno, R. Nishiyori, S. Shirakawa, Chem. Asian J. 15(2020) 463-472.
S. kaneko, Y. Kumatabara, S. Shimizu, et al., Chem. Commun. (Camb. ) 53(2017) 119-122.
doi: 10.1039/C6CC08411G
(a) J.J. Tan, N. Yasuda, Org. Process Res. Dev. 19(2015) 1731-1746;
(b) K. Maruoka, Proc. Jpn. Acad., Ser. B: Phys. Biol. Sci. 95(2019) 1-16;
(c) R.J. Fox, J. Qiu, Org. Process Res. Dev. 24(2020) 235-241.
S.Y. Liu, K. Maruoka, S. Shirakawa, Angew. Chem. Int. Ed. 56(2017) 4819-4823.
doi: 10.1002/anie.201612328
(a) J. Yoshida, A. Shimizu, Y. Ashikari, et al., Bull. Chem. Soc. Jpn. 88(2015) 763-775;
(b) S. Suga, K. Matsumoto, K. Ueoka, J. Yoshida, J. Am. Chem. Soc. 128(2006) 7710-7711;
(d) Y. Ashikari, T. Nokami, J. Yoshida, J. Am. Chem. Soc. 133(2011) 11840-11843;
(e) R. Hayashi, A. Shimizu, J. Yoshida, J. Am. Chem. Soc. 138(2016) 8400-8403;
(f) R. Hayashi, A. Shimizu, J.A. Davies, et al., Angew. Chem. Int. Ed. 57(2018) 12891-12895.
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228
Yang Yang , Jing-Li Luo , Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269
Caixia Zhu , Qing Hong , Kaiyuan Wang , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
Hailong He , Wenbing Wang , Wenmin Pang , Chen Zou , Dan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Yaxin Sun , Huiyu Li , Shiquan Guo , Congju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418
Dong Cheng , Youyou Feng , Bingxi Feng , Ke Wang , Guoxin Song , Gen Wang , Xiaoli Cheng , Yonghui Deng , Jing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Zhikang Wu , Guoyong Dai , Qi Li , Zheyu Wei , Shi Ru , Jianda Li , Hongli Jia , Dejin Zang , Mirjana Čolović , Yongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
Feibin Wei , Yongfang Rao , Yu Huang , Wei Wang , Hui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139