Citation: Rong Fan, Chen Tan, Yongguo Liu, Yun Wei, Xiaowen Zhao, Xinyuan Liu, Jiajing Tan, Hiroto Yoshida. A leap forward in sulfonium salt and sulfur ylide chemistry[J]. Chinese Chemical Letters, ;2021, 32(1): 299-312. doi: 10.1016/j.cclet.2020.06.003 shu

A leap forward in sulfonium salt and sulfur ylide chemistry


  • Author Bio:





    Jiajing Tan obtained his BS from University of Science and Technology of China in 2008. He received his PhD in 2013 under the supervision of Professor Hisashi Yamamoto at the University of Chicago. From 2013–2015, he worked at Merck & Co. Then, he started his academic career at Beijing University of Chemical and Technology. His current research interests are aryne chemistry and green chemistry.

  • * Corresponding authors.
    E-mail addresses: weiyun@mail.buct.edu.cn (Y. Wei), tanjj@mail.buct.edu.cn (J. Tan), yhiroto@hiroshima-u.ac.jp (H. Yoshida).
  • Received Date: 24 April 2020
    Revised Date: 21 May 2020
    Accepted Date: 1 June 2020
    Available Online: 3 June 2020

Figures(36)

  • Sulfonium salts and sulfur ylides are important S(Ⅳ) motifs, and have displayed many unique reactivities to provide simple, effective, and often stereoselective synthesis toward sulfur containing compounds. Impressive developments have been witnessed within this field during the past several years. In light of the increasing demand of organosulfur compounds across the range of chemical sciences, our aim of this review is to provide a concise overview of recent advances of sulfonium salt and sulfur ylide chemistry. Selected examples are organized in three parts on the basis of their role in organic reactions (reactants, intermediates and catalysts).
  • 加载中
    1. [1]

      (a) R.J. Cremlyn, An Introduction to Organosulfur Chemistry, John Wiley & Sons, Hoboken, 1996;
      (b) P.C.B. Page, Organosulfur Chemistry I., Springer, Heidelberg, 1999;
      (c) C.M. Rayner, Advances in Sulfur Chemistry, JAI Press, Greenwich, 2000;
      (d) A.Q. Acton, Sulfur Compounds: Advances in Research and Application, Scholarly Editions, Atlanta, 2012.

    2. [2]

      (a) E.A. Ilardi, E. Vitaku, J.T. Njardarson, J. Med. Chem. 57(2014) 2832-2842;
      (b) B.R. Smith, C.M. Eastman, J.T. Njardarson, J. Med. Chem. 57(2014) 9764-9773.

    3. [3]

      (a) K.L. Dunbar, D.H. Scharf, A. Litomska, C. Hertweck, Chem. Rev. 117(2017) 5521-5577;
      (b) M.H. Feng, B.Q. Tang, S. Liang, X.F. Jiang, Curr. Top. Med. Chem. 16(2016) 1200-1216.

    4. [4]

      (a) L.D. Wang, W. He, Z.K. Yu, Chem. Soc. Rev. 42(2013) 599-621;
      (b) S.G. Modha, V.P. Mehta, E.V. Van der Eycken, Chem. Soc. Rev. 42(2013) 5042-5055;
      (c) D. Kaiser, I. Klose, R. Oost, et al., Chem. Rev. 119(2019) 8701-8780.

    5. [5]

      (a) A.W. Johnson, R.B. Lacount, J. Am. Chem. Soc. 83(1961) 417-423;
      (b) E.J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 84(1962) 867-868;
      (c) S.Q. Guo, N.N. Zhang, X.Z. Tang, et al., Chin. Chem. Lett. 30(2019) 406-408.

    6. [6]

      L. Kurti, B. Czako, Strategic Applications of Named Reactions in Organic Synthesis, Elsevier, Burlington, 2005, pp. 294-295.

    7. [7]

      (a) R. Oost, R.J.D. Neuhaus, J. Merad, N. Maulide, Sulfur Ylides in Organic Synthesis and Transition Metal Catalysis, Structure and Bonding, Springer, Berlin, Heidelberg, 2017;
      (b) J.D. Neuhaus, R. Oost, J. Merad, N. Maulide, Top. Curr. Chem. 376(2018) 15;
      (c) L.Q. Lu, T.R. Li, Q. Wang, W.J. Xiao, Chem. Soc. Rev. 46(2017) 4135-4149;
      (d) M. Mondal, S. Chen, N.J. Kerrigan, Molecules 23(2018) 738-767;
      (e) F. Pan, Z.J. Shi, ACS Catal. 4(2014) 280-288;
      (f) K. Gao, S. Otsuka, A. Baralle, et al., J. Synth. Org. Chem. Jpn. 74(2016) 1119-1127;
      (g) D.H. Ortgies, A. Hassanpour, F. Chen, et al., Eur. J. Org. Chem. 2016(2016) 408-425;
      (h) S. Otsuka, K. Nogi, H. Yorimitsu, Top. Curr. Chem. 376(2018) 13;
      (i) P. Chauhan, S. Mahajan, D. Enders, Chem. Rev. 114(2014) 8807-8864.

    8. [8]

      (a) T.J. Colacot, New Trends in Cross-Coupling: Theory and Applications, 4th. ed., Royal Society of Chemistry, British, 2014;
      (b) Á. Molnár, Palladium-Catalyzed Coupling Reactions: Practical Aspects and Future Developments, Wiley-VCH, Weinheim, Germany, 2013;
      (c) M.L. Crawley, B.M. Trost, Applications of Transition Metal Catalysis in Drug Discovery and Development, Wiley, New York, 2012;
      (d) J.J. Tan, Y.G. Chen, H.M. Li, N. Yasuda, J. Org. Chem. 79(2014) 8871-8876.

    9. [9]

      J. Srogl, G.D. Allred, L.S. Liebeskind, J. Am. Chem. Soc. 119(1997) 12376-12377.  doi: 10.1021/ja9726926

    10. [10]

      (a) Z.Y. Tian, Y.T. Hu, H.B. Teng, C.P. Zhang, Tetrahedron 59(2018) 299-309;
      (b) S.M. Wang, H.X. Song, X.Y. Wang, et al., Chem. Commun. (Camb. ) 52(2016) 11893-11896;
      (c) S.M. Wang, X.Y. Wang, H.L. Qin, C.P. Zhang, Chem. Eur. J. 22(2016) 6542-6546;
      (d) Z.Y. Tian, S.M. Wang, S.J. Jia, et al., Org. Lett. 19(2017) 5454-5457;
      (e) Z.Y. Tian, C.P. Zhang, Chem. Commun. (Camb. ) 55(2019) 11936-11939;
      (f) X.Y. Wang, H.X. Song, S.M. Wang, et al., Tetrahedron 72(2016) 7606-7612.

    11. [11]

      (a) D. Uno, H. Minami, S. Otsuka, et al., Chem. Asian J. 13(2018) 2397-2400;
      (b) H. Minami, K. Nogi, H. Yorimitsu, Org. Lett. 21(2019) 2518-2522;
      (c) H. Minami, S. Otsuka, K. Nogi, H. Yorimitsu, ACS Catal. 8(2018) 579-583.

    12. [12]

      D.C. Simkó, P. Elekes, V. Pázmándi, Z. Novák, Org. Lett. 20(2018) 676-679.  doi: 10.1021/acs.orglett.7b03813

    13. [13]

      P. Cowper, Y. Jin, M.D. Turton, et al., Angew. Chem. Int. Ed. 55(2016) 2564-2568.  doi: 10.1002/anie.201510666

    14. [14]

      M.H. Aukland, F.J.T. Talbot, J.A. Fernández-Salas, et al., Angew. Chem. Int. Ed. 57(2018) 9785-9789.  doi: 10.1002/anie.201805396

    15. [15]

      (a) D. Ravelli, S. Protti, M. Fagnoni, Chem. Rev. 116(2016) 9850-9913;
      (b) Q.Q. Zhou, Y.Q. Zou, L.Q. Lu, W.J. Xiao, Angew. Chem. Int. Ed. 58(2019) 1586-1604;
      (c) N.A. Romero, D.A. Nicewicz, Chem. Rev. 116(2016) 10075-10166.

    16. [16]

      I. Ghosh, L. Marzo, A. Das, et al., Acc. Chem. Res. 49(2016) 1566-1577.  doi: 10.1021/acs.accounts.6b00229

    17. [17]

      S. Donck, A. Baroudi, L. Fensterbank, et al., Adv. Synth. Catal. 355(2013) 1477-1482.  doi: 10.1002/adsc.201300040

    18. [18]

      S. Otsuka, K. Nogi, T. Rovis, H. Yorimitsu, Chem. Asian J. 14(2019) 532-536.  doi: 10.1002/asia.201801732

    19. [19]

      (a) F. Berger, M.B. Plutschack, J. Riegger, et al., Nature 567(2019) 223-228;
      (b) J.K. Li, J.T. Chen, R.C. Sang, et al., Nat. Chem. 12(2020) 56-62;
      (c) P.S. Engl, A.P. Häring, F. Berger, et al., J. Am. Chem. Soc. 141(2019) 13346-13351;
      (d) F. Ye, F. Berger, H. Jia, et al., Angew. Chem. Int. Ed. 58(2019) 14615-14619;
      (e) R.C. Sang, S.E. Korkis, W.Q. Su, et al., Angew. Chem. Int. Ed. 58(2019) 16161-16166.

    20. [20]

      C. Huang, J. Feng, R. Ma, et al., Org. Lett. 21(2019) 9688-9692.  doi: 10.1021/acs.orglett.9b03850

    21. [21]

      S. Rohrbach, A.J. Smith, J.H. Pang, et al., Angew. Chem. Int. Ed. 58(2019) 16368-16388.  doi: 10.1002/anie.201902216

    22. [22]

      (a) V. Bernard-Gauthier, T.L. Collier, S.H. Liang, N. Vasdev, Drug Discov. Today Technol. 25(2017) 19-26;
      (b) G. Pascali, L. Matesic, B. Zhang, et al., EJNMMI Radiopharm. Chem. 2(2017) 9-26.

    23. [23]

      (a) L.J. Mu, C.R. Fischer, J.P. Holland, et al., Eur. J. Org. Chem. 2012(2012) 889-892;
      (b) K. Sander, T. Gendron, E. Yiannaki, et al., Sci. Rep. 5(2015) 9941-9945.

    24. [24]

      T. Gendron, K. Sander, K. Cybulska, et al., J. Am. Chem. Soc. 140(2018) 11125-11132.  doi: 10.1021/jacs.8b06730

    25. [25]

      P. Xu, D. Zhao, F. Berger, et al., Angew. Chem. Int. Ed. 59(2020) 1956-1960.  doi: 10.1002/anie.201912567

    26. [26]

      (a) X.X. Ming, Z.Y. Tian, C.P. Zhang, Chem. Asian J. 14(2019) 3370-3379;
      (b) Z.Y. Tian, X.X. Ming, H.B. Teng, et al., Chem. Eur. J. 24(2018) 13744-13748.

    27. [27]

      J.N. Zhao, M. Kayumov, D.Y. Wang, A. Zhang, Org. Lett. 21(2019) 7303-7306.  doi: 10.1021/acs.orglett.9b02584

    28. [28]

      (a) Y.F. Liu, X.X. Shao, P.P. Zhang, et al., Org. Lett. 17(2015) 2752-2755;
      (b) J.S. Zhu, Y.F. Liu, Q.L. Shen, Angew. Chem. Int. Ed. 55(2016) 9050-9054;
      (c) Y.F. Liu, L. Lu, Q.L. Shen, Angew. Chem. Int. Ed. 56(2017) 9930-9934.

    29. [29]

      (a) C.F. Ni, M.Y. Hu, J.B. Hu, Chem. Rev. 115(2015) 765-825;
      (b) C. Zhang, Org. Biomol. Chem. 12(2014) 6580-6589;
      (c) S. Barata-Vallejo, B. Lantaño, A. Postigo, Chem. Eur. J. 20(2014) 16806-16829;
      (d) G.K. Liu, X. Li, W.B. Qin, et al., Chin. Chem. Lett. 30(2019) 1515-1518.

    30. [30]

      S. Verhoog, C.W. Kee, Y.L. Wang, et al., J. Am. Chem. Soc. 140(2018) 1572-1575.  doi: 10.1021/jacs.7b10227

    31. [31]

      (a) B. Waldecker, F. Kraft, C. Golz, M. Alcarazo, Angew. Chem. Int. Ed. 57(2018) 12538-12542;
      (b) X.D. Li, C. Golz, M. Alcarazo, Angew. Chem. Int. Ed. 58(2019) 9496-9500.

    32. [32]

      (a) Y. Xia, D. Qiu, J.B. Wang, Chem. Rev. 117(2017) 13810-13889;
      (b) M.P. Doyle, R. Duffy, M. Ratnikov, L. Zhou, Chem. Rev. 110(2010) 704-724;
      (c) Q.Q. Cheng, M.P. Doyle, Adv. Organomet. Chem. 66(2016) 1-31;
      (d) Z.F. Liu, X.F. Yue, Q. Wei, K.L. Han, Chin. Chem. Lett. 18(2007) 107-110.

    33. [33]

      (a) Z. Sheng, Z.K. Zhang, C.H. Chu, et al., Tetrahedron 73(2017) 4011-4022;
      (b) X.Y. Wang, X. Wang, J.B. Wang, Tetrahedron 75(2019) 949-964;
      (c) Z.K. Zhang, Z. Sheng, W.Z. Yu, et al., Nat. Chem. 9(2017) 970-976.

    34. [34]

      (a) X.H. Liu, H.F. Zheng, Y. Xia, et al., Acc. Chem. Res. 50(2017) 2621-2631;
      (b) X.B. Lin, Y. Tang, W. Yang, et al., J. Am. Chem. Soc. 140(2018) 3299-3305;
      (c) X. Lin, W. Yang, W.K. Yang, et al., Angew. Chem. Int. Ed. 58(2019) 13492-13498.

    35. [35]

      L.K. Meng, P. Wu, J. Fang, et al., J. Am. Chem. Soc. 141(2019) 11775-11780.  doi: 10.1021/jacs.9b04619

    36. [36]

      (a) X.F. Xu, C. Li, Z.H. Tao, Y.J. Pan, Green Chem. 19(2017) 1245-1249;
      (b) X.F. Xu, C. Li, M.T. Xiong, et al., Chem. Commun. (Camb. ) 53(2017) 6219-6222;
      (c) X.J. Yan, C. Li, X.F. Xu, et al., Tetrahedron 75(2019) 3081-3087.

    37. [37]

      (a) R. Hommelsheim, Y.J. Guo, Z. Yang, et al., Angew. Chem. Int. Ed. 58(2019) 1203-1207;
      (b) S. Jana, Z. Yang, C. Pei, et al., Chem. Sci. 10(2019) 10129-10134;
      (c) Z. Yang, Y.J. Guo, R.M. Koenigs, Chem. Eur. J. 25(2019) 6703-6706;
      (d) S. Jana, R.M. Koenigs, Asian J. Org. Chem. 8(2019) 683-686;
      (e) C. Empel, R.M. Koenigs, J. Flow Chem. 10(2020) 157-160.

    38. [38]

      J.H. Yang, J.Z. Wang, H.T. Huang, et al., Org. Lett. 21(2019) 2654-2657.  doi: 10.1021/acs.orglett.9b00647

    39. [39]

      K. Orłowska, K. Rybicka-Jasinska, P. Krajewski, D. Gryko, Org. Lett. 22(2020) 1018-1021.  doi: 10.1021/acs.orglett.9b04560

    40. [40]

      (a) J.R. Shi, Y.Y. Li, Y. Li, Chem. Soc. Rev. 46(2017) 1707-1719;
      (b) T. Roy, A.T. Biju, Chem. Commun. (Camb. ) 54(2018) 2580-2594;
      (c) T. Matsuzawa, S. Yoshida, T. Hosoya, Tetrahedron Lett. 59(2018) 4197-4208;
      (d) Y.W. Zeng, J.B. Hu, Synthesis 48(2016) 2137-2150;
      (e) H. Yoshida, K. Takaki, Synlett 23(2012) 1725-1732;
      (f) D.B. Werz, A.T. Biju, Angew. Chem. Int. Ed. 59(2020) 3385-3398.

    41. [41]

      (a) J.H. Chen, V. Palani, T.R. Hoye, J. Am. Chem. Soc. 138(2016) 4318-4321;
      (b) X. Xiao, T.R. Hoye, Nat. Chem. Biol. 10(2018) 838-844;
      (c) S.P. Ross, T.R. Hoye, Nat. Chem. Biol. 9(2017) 523-530.

    42. [42]

      Y.M. Li, C. Mück-Lichtenfeld, A. Studer, Angew. Chem. Int. Ed. 55(2016) 14435-14438.  doi: 10.1002/anie.201608144

    43. [43]

      (a) X.B. Xu, Z.H. Lin, Y.Y. Liu, et al., Org. Biomol. Chem. 15(2017) 2716-2720;
      (b) M. Thangaraj, R.N. Gaykar, T. Roy, A.T. Biju, J. Org. Chem. 82(2017) 4470-4476;
      (c) J.J. Tan, T.Y. Zheng, K. Xu, C.Y. Liu, Org. Biomol. Chem. 15(2017) 4946-4950.

    44. [44]

      T.Y. Zheng, J.J. Tan, R. Fan, et al., Chem. Commun. (Camb. ) 54(2018) 1303-1306.  doi: 10.1039/C7CC08553B

    45. [45]

      (a) R. Fan, B.B. Liu, T.Y. Zheng, et al., Chem. Commun. (Camb. ) 54(2018) 7081-7084;
      (b) H. Jian, Q. Wang, W.H. Wang, et al., Tetrahedron 74(2018) 2876-2883.

    46. [46]

      W.H. Ding, A.M. Yu, L. Zhang, X.T. Meng, Org. Lett. 21(2019) 9014-9018.  doi: 10.1021/acs.orglett.9b03417

    47. [47]

      (a) F.L. Liu, J.R. Chen, Y.Q. Zou, Q. Wei, W.J. Xiao, Org. Lett. 16(2014) 3768-3771;
      (b) H.Y. Li, L.J. Xing, M.M. Lou, et al., Org. Lett. 17(2015) 1098-1101;
      (c) H. Hazatika, K. Neog, A. Sharma, et al., J. Org. Chem. 84(2019) 5846-5854;
      (d) Y.M. Li, A. Studer, Org. Lett. 19(2017) 666-669;
      (e) Y.Y. Li, D.C. Qiu, R.R. Gu, et al., J. Am. Chem. Soc. 138(2016) 10814-10817;
      (f) X.J. Li, Y. Sun, X. Huang, et al., Org. Lett. 19(2017) 838-841;
      (g) T. Matsuzawa, K. Uchida, S. Yoshida, T. Hosoya, Org. Lett. 19(2017) 5521-5524;
      (h) D.L. Chen, Y. Sun, M.Y. Chen, et al., Org. Lett. 21(2019) 3986-3989.

    48. [48]

      (a) X.H. Ye, J. Wang, S.T. Ding, et al., Chem. Eur. J. 23(2017) 10506-10510;
      (b) J. Wang, S.Y. Zhang, C. Xu, et al., Angew. Chem. Int. Ed. 57(2018) 6915-6920.

    49. [49]

      A. Parodi, S. Battaglioli, Y. Liu, et al., Chem. Commun. (Camb. ) 55(2019) 9669-9672.  doi: 10.1039/C9CC04302K

    50. [50]

      Z.Q. He, F.F. Song, H. Sun, Y. Huang, J. Am. Chem. Soc. 140(2018) 2693-2699.  doi: 10.1021/jacs.8b00380

    51. [51]

      M.T. Taylor, J.E. Nelson, M.G. Suero, M.J. Gaunt, Nature 562(2018) 563-568.  doi: 10.1038/s41586-018-0608-y

    52. [52]

      (a) D.Y. Qian, J.W. Sun, Chem. Eur. J. 25(2019) 3740-3751;
      (b) V. Iaroshenko, Organophosphorus Chemistry: From Molecules to Applications, Wiley-VCH, Weinheim, 2019;
      (c) A. Golandaj, A. Ahmad, D. Ramjugernath, Adv. Synth. Catal. 359(2017) 3676-3706;
      (d) K. Ishihara, Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 85(2009) 290-313;
      (e) C.Q. He, C.C. Lam, P.Y. Yu, et al., J. Org. Chem. 85(2020) 2618-2625;
      (f) T. Nakamura, K. Okuno, R. Nishiyori, S. Shirakawa, Chem. Asian J. 15(2020) 463-472.

    53. [53]

      S. kaneko, Y. Kumatabara, S. Shimizu, et al., Chem. Commun. (Camb. ) 53(2017) 119-122.  doi: 10.1039/C6CC08411G

    54. [54]

      (a) J.J. Tan, N. Yasuda, Org. Process Res. Dev. 19(2015) 1731-1746;
      (b) K. Maruoka, Proc. Jpn. Acad., Ser. B: Phys. Biol. Sci. 95(2019) 1-16;
      (c) R.J. Fox, J. Qiu, Org. Process Res. Dev. 24(2020) 235-241.

    55. [55]

      S.Y. Liu, K. Maruoka, S. Shirakawa, Angew. Chem. Int. Ed. 56(2017) 4819-4823.  doi: 10.1002/anie.201612328

    56. [56]

      (a) J. Yoshida, A. Shimizu, Y. Ashikari, et al., Bull. Chem. Soc. Jpn. 88(2015) 763-775;
      (b) S. Suga, K. Matsumoto, K. Ueoka, J. Yoshida, J. Am. Chem. Soc. 128(2006) 7710-7711;
      (d) Y. Ashikari, T. Nokami, J. Yoshida, J. Am. Chem. Soc. 133(2011) 11840-11843;
      (e) R. Hayashi, A. Shimizu, J. Yoshida, J. Am. Chem. Soc. 138(2016) 8400-8403;
      (f) R. Hayashi, A. Shimizu, J.A. Davies, et al., Angew. Chem. Int. Ed. 57(2018) 12891-12895.

  • 加载中
    1. [1]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    2. [2]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    3. [3]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    4. [4]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    5. [5]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    6. [6]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    7. [7]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    8. [8]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    9. [9]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    10. [10]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    11. [11]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    12. [12]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    13. [13]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    14. [14]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    15. [15]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    16. [16]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    17. [17]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    18. [18]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    19. [19]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    20. [20]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

Metrics
  • PDF Downloads(126)
  • Abstract views(2166)
  • HTML views(532)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return