Citation: Yufeng Cao, Yanmei Chen, Zhecheng Zhang, Jin Wang, Xiaolei Yuan, Qin Zhao, Yue Ding, Yong Yao. CO2 and photo-controlled reversible conversion of supramolecular assemblies based on water soluble pillar[5]arene and coumarin-containing guest[J]. Chinese Chemical Letters, ;2021, 32(1): 349-352. doi: 10.1016/j.cclet.2020.03.058 shu

CO2 and photo-controlled reversible conversion of supramolecular assemblies based on water soluble pillar[5]arene and coumarin-containing guest

    * Corresponding authors.
    E-mail addresses: zhao.q@ntu.edu.cn (Q. Zhao), yaoyong1986@ntu.edu.cn (Y. Yao).
  • Received Date: 8 February 2020
    Revised Date: 14 March 2020
    Accepted Date: 23 March 2020
    Available Online: 27 March 2020

Figures(4)

  • In this communication, a new supramolecualr amphiphile was successfully constructed based on water soluble pillar[5]arene and a unique guest which contain a CO2 responsive tertiary amine unit and a UV responsive coumarin group. When guest molecule 1 dispersed in water, it self-assembled into sheet-like structures. Upon bubbling CO2, 1 transformed into 1H due to the tertiary amine unit was protonated, accompany the nano-sheets transformed into vesicles. Further irradiation of 1H with 365 nm light for 3 h, the coumarin group reacted with each other to form bola-type amphiphie 2H. In this case, vesicles collapsed and re-assembled into nano-tubes. However, when addition of WP5 into the solution of 1H, the vesicles transformed into micelles, this is due to the formation of supramolecular amphiphile WP5&1H. Upon irradiation of WP5&1H with 365 nm light for 3 h, nano-ribbons observed instead of micelles in the solution. Notably, nanotubes from 2H could also transform into nano-ribbons after adding WP5. The self-assembly process and the resultant assemblies were characterized by TEM, SEM, DLS, SAXS and NMR technologies. Due to both CO2 and light are pgreenq for living organisms, we anticipated our system can offer the possibilities in pon demandq drug absorption and release.
  • 加载中
    1. [1]

      (a) Y. Chang, Y. Jiao, H.E. Symons, et al., Chem. Soc. Rev. 48 (2019) 989-1003;
      (b) Y. Kim, W. Li, S. Shin, M. Lee, Acc. Chem. Res. 46 (2013) 2888-2897;
      (c) S. Moaven, J. Yu, M. Vega, D.K. Unruh, A. Cozzolino, Chem. Commun. 54 (2018) 8849-8852;
      (d) S.H.R. Shin, P.T. McAninch, I.M. Henderson, et al., Chem. Commun. 54 (2018) 9043-9046;
      (e) T.B. Schuster, D.B. Ouboter, C. Palivan, W. Meier, Langmuir 27 (2011) 4578-4584;
      (f) M.A.J. Gillissen, M.M.E. Koenigs, J.J.H. Spiering, et al., J. Am. Chem. Soc. 136 (2014) 336-343;
      (g) X. Yan, S. Li, T.R. Cook, et al., J. Am. Chem. Soc. 135 (2013) 14036-14039;
      (h) A. Zumbuehl, Langmuir 35 (2019) 10223-10232;
      (i) K. Helttunen, P. Shahgaldian, New J. Chem. 34 (2010) 2704-2714;
      (j) Z. Zhang, Z. Zhao, Y. Hou, et al., Angew. Chem. Int. Ed. 58 (2019) 8862-8866;
      (k) Y. Cai, Y. Wang, C. Wang, et al., Chin. Chem. Lett. 31 (2020) 689-692.

    2. [2]

      (a) W. Zhang, C. Gao, J. Mater. Chem. A 5 (2017) 16059-16104;
      (b) H. Xiong, D. Zhou, X. Zheng, et al., Chem. Commun. 53 (2017) 3422-3425;
      (c) C. Wang, Q. Chen, Z. Wang, X. Zhang, Angew. Chem. Int. Ed. 49 (2010) 8612-8615;
      (d) Y. Wang, H. Xu, X. Zhang, Adv. Mater. 21 (2009) 2849-2864.

    3. [3]

      (a) Y. Zhou, E. Li, R. Zhao, K. Jie, Org. Lett. 20 (2018) 4888-4892;
      (b) Q. Yan, J. Wang, Y. Yin, J. Yuan, Angew. Chem. Int. Ed. 52 (2013) 5070-5073;
      (c) C. Park, K. Lee, C. Kim, Angew. Chem., Int. Ed. 48 (2009) 1275-1278;
      (d) W. Shao, X. Liu, X.Y. Hu, J.J. Zhu, L. Wang, Chem. Commun. 54 (2018) 9462-9465;
      (e) Q. Cheng, H. Yin, C. Sun, et al., Chem. Commun. 54 (2018) 8128-8131.

    4. [4]

      (a) T. Ogoshi, S. Kanai, S. Fujinami, T.A. Yamagishi, Y. Nakamoto, J. Am. Chem. Soc. 130 (2008) 5022-5023;
      (b) T. Kakuta, T.A. Yamagishi, T. Ogoshi, Acc. Chem. Res. 51 (2018) 1656-1666;
      (c) J. Chen, Y. Wang, C. Wang, et al., Chem. Commum. 55 (2019) 6817-6826;
      (d) P. Li, Q. Yao, B. Lil, G. Ma, M. Yin, Macromol. Rapid Comm. 39 (2018) 1800133;
      (e) J. Chen, H. Ni, Z. Meng, et al., Nat. Commun. 10 (2019) 3546;
      (f) X. Zhang, X. Wang, B. Wang, Z.J. Ding, C. Li, Chin. Chem. Lett. 31 (2020) 3230-3232;
      (g) Y. Chen, S. Sun, D. Lu, Y. Shi, Y. Yao, Chin. Chem. Lett. 30 (2019) 37-43.

    5. [5]

      (a) B. Zheng, F. Wang, S. Dong, F. Huang, Chem. Soc. Rev. 41 (2012) 1621-1636;
      (b) T. Yokoyama, M. Mizuguzhi, J. Med. Chem. 62 (2019) 2076-2082.

    6. [6]

      V. Ramamurthy, S. Gupta, Chem. Soc. Rev. 44 (2015) 119-135.  doi: 10.1039/C4CS00284A

    7. [7]

      Y. Chen, F. Huang, Z.T. Li, Y. Liu, Sci. China Chem. 61 (2018) 979-992.  doi: 10.1007/s11426-018-9337-4

    8. [8]

      (a) K.L. Assal, W.M. Nau, Chem. Soc. Rev. 44 (2015) 394-418;
      (b) D. Shetty, J.K. Khedkar, K.M. Park, K. Kim, Chem. Soc. Rev. 44 (2015) 8747-8761.

    9. [9]

      (a) W. Feng, M. Jin, K. Yang, Y. Pei, Z. Pei, Chem. Commun. 54 (2018) 13626-13640;
      (b) S. Sun, M. Geng, L. Huang, et al., Chem. Commun. 54 (2018) 13006-13009;
      (c) Y.J. Zhou, K. Jie, F. Huang, Chem. Commun. 54 (2018) 12856-12859;
      (d) N. Song, T. Kakuta, T.A. Yamagishi, Y.W. Yang, T. Ogoshi, Chemistry 4 (2018) 2029-2053;
      (e) Q. Lin, X.M. Jiang, X. Ma, et al., Sens. Actuator. B: Chem. 272 (2018) 139-145;
      (f) X. Zeng, H. Deng, X. Jia, et al., Chem. Commun. 54 (2018) 11634-1163;
      (g) M. Zuo, W. Qian, Z. Xu, et al., Small 14 (2018)1801942;
      (h) Y. Sun, F. Zhang, J. Quan, et al., Nat. Comm. 9 (2018) 2617;
      (i) H. Zhang, Z. Liu, Y. Zhao, Chem. Soc. Rev. 47 (2018) 5491-5528;
      (j) F. Zhang, J. Ma, Y. Sun, et al., Anal. Chem. 90 (2018) 8270-8275;
      (k) X. Li, Z. Li, Y.W. Yang, Adv. Mater. 30 (2018)1800177.

    10. [10]

      (a) V. Kardelis, K. Li, I. Nierengarten, et al., Macromolecules 50 (2017) 9144-9150;
      (b) M.K. Dhinakaran, W. Gong, Y. Yin, A. Wajahat, X. Kuang, L. Wang, G. Ning, Polym. Chem. 8 (2017) 5295;
      (c) Y. Wang, M.Z. Lv, N. Song, et al., Macromolecules 50 (2017) 5759-5766.

    11. [11]

      K. Jie, Y. Yao, X. Chi, F. Huang, Chem. Commun. 50 (2014) 5503-5505.  doi: 10.1039/c4cc01704h

  • 加载中
    1. [1]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    2. [2]

      Cui-Ting YangDan-Dan WangShuai ChenJian-Mei YangJun-Nan HeJun-Hui ZhangXiao-Qing LiuJin ZhangLei ZhangYan Zhao . A chiral supramolecular nanocatcher prepared by d-biotin-pillar[5]arene for the selective capture and targeted delivery of oxaliplatin enantiomers. Chinese Chemical Letters, 2025, 36(9): 110820-. doi: 10.1016/j.cclet.2025.110820

    3. [3]

      Shuwen GuoHaipeng XuZijun ChengLeyong WangPeng YangRuibing Wang . Efficient cytosolic delivery of protein by preorganized amidiniums on pillar[5]arene. Chinese Chemical Letters, 2025, 36(10): 111022-. doi: 10.1016/j.cclet.2025.111022

    4. [4]

      Yu-Jie LongXiao-Ni HanYing HanChuan-Feng Chen . Recent advances in supramolecular luminescent materials based on macrocyclic arenes. Chinese Chemical Letters, 2025, 36(6): 110600-. doi: 10.1016/j.cclet.2024.110600

    5. [5]

      Xintian QuZeen LiuZhifan WangDongyan YuXueqiu HuangJie YangJiecheng JiXueqin WeiCheng Yang . Achieving strong and tunable circularly polarized luminescence through pillar[5]arenes insertion in BINOL-Py-based chromophore. Chinese Chemical Letters, 2025, 36(11): 111024-. doi: 10.1016/j.cclet.2025.111024

    6. [6]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    7. [7]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    8. [8]

      Jingyu ChenSha WuYuhao WangJiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102

    9. [9]

      Kun ZhangXin-Yue LouYan WangWeiwei HuanYing-Wei Yang . Emission enhancement induced by the supramolecular assembly of leggero pillar[5]arenes for the detection and separation of silver ions. Chinese Chemical Letters, 2025, 36(6): 110464-. doi: 10.1016/j.cclet.2024.110464

    10. [10]

      Lintao WuYujia MengXumei ZhengYiqiao BaiChun HanZhijun WangJie YangXiaobi JingYong Yao . Pillar[5]arene based prodrug as a GSH-responsive SO2 nanogenerator for effective gas cancer therapy. Chinese Chemical Letters, 2025, 36(9): 110808-. doi: 10.1016/j.cclet.2024.110808

    11. [11]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    12. [12]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    13. [13]

      Ying ChenLun LiGuohao HanRen LiuGuanghui AnYi Zhu . Macromolecular coumarin sulfonium salt with side chain effect constructed by copolymerization strategy for free radical, cationic, and hybrid photopolymerizations. Chinese Chemical Letters, 2025, 36(7): 110458-. doi: 10.1016/j.cclet.2024.110458

    14. [14]

      Qianyun YeYuanyuan LiangYuhe YuanXiaohuan SunLiqi ZhuXuan WuJie HanRong Guo . pH-responsive chiral supramolecular cysteine-Zn2+-indocyanine green assemblies for triple-level chirality-specific anti-tumor efficacy. Chinese Chemical Letters, 2025, 36(5): 110432-. doi: 10.1016/j.cclet.2024.110432

    15. [15]

      Guoxing LiuYixin LiChangming TianYongmei XiaoLijie LiuZhanqi CaoSong JiangXin ZhengCaoyuan NiuYun-Lai RenLiangru YangXianfu ZhengYong Chen . Highly reversible photomodulated hydrosoluble stiff-stilbene supramolecular luminophor induced by cucurbituril. Chinese Chemical Letters, 2024, 35(8): 109403-. doi: 10.1016/j.cclet.2023.109403

    16. [16]

      Linnan JiangZhenkai QianYong ChenXiaoyong YuYugui QiuWen-Wen XuYonghui SunXiufang XuLihua WangYu Liu . Double response reversible phosphorescence based on cyclodextrin supramolecular flexible elastic achieved multicolor delayed fluorescence. Chinese Chemical Letters, 2025, 36(8): 110676-. doi: 10.1016/j.cclet.2024.110676

    17. [17]

      Rong ZhangYong ChenZhiyi YuYu Liu . Laponite cascade assembly activated reversible multicolor luminescence supramolecular hydrogel with near-infrared emission. Chinese Chemical Letters, 2026, 37(1): 111147-. doi: 10.1016/j.cclet.2025.111147

    18. [18]

      Jingxiong JiangYao DongYuchun WangLijuan QiZhen-Yu LiTai-Bao WeiWen-Juan QuQi LinBingbing Shi . Separation of toluene-alcohol azeotropes by porous crystals of fluorinated leaning pillar[6]arene. Chinese Chemical Letters, 2025, 36(8): 110759-. doi: 10.1016/j.cclet.2024.110759

    19. [19]

      Fengyao CuiQiaona ZhangTangxin XiaoZhouyu WangLeyong Wang . Reversible phosphorescence in pseudopolyrotaxane elastomer. Chinese Chemical Letters, 2024, 35(10): 110061-. doi: 10.1016/j.cclet.2024.110061

    20. [20]

      Yu Tian Yijun Lin Siyu Deng Yinghe Tan Xuanyi Bie Zhaoyang Chen Pangkuan Chen . Metal-Coordinate Complexes (M = 3d, 4f) with Enhanced Circularly Polarized Luminescence in Planar Chiral Pillar[5]arenes. Chinese Journal of Structural Chemistry, 2025, 44(8): 100626-100626. doi: 10.1016/j.cjsc.2025.100626

Metrics
  • PDF Downloads(8)
  • Abstract views(1936)
  • HTML views(173)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return