Citation: Ruijian Li, Zhe Bai, Wenshuo Hou, Jinshuo Qiao, Wang Sun, Yu Bai, Zhenhua Wang, Kening Sun. Spinel-type bimetal sulfides derived from Prussian blue analogues as efficient polysulfides mediators for lithium−sulfur batteries[J]. Chinese Chemical Letters, ;2021, 32(12): 4063-4069. doi: 10.1016/j.cclet.2020.03.048 shu

Spinel-type bimetal sulfides derived from Prussian blue analogues as efficient polysulfides mediators for lithium−sulfur batteries

    * Corresponding author at:Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
    E-mail address: wangzh@bit.edu.cn (Z. Wang).
  • Received Date: 11 March 2020
    Accepted Date: 17 March 2020
    Available Online: 19 March 2020

Figures(8)

  • More and more attentions have been attracted by lithium-sulfur batteries (Li-S), owing to the high energy density for the increasingly advanced energy storage system. While the poor cycling stability, due to the inherent polysulfide shuttle, seriously hampered their practical application. Recently, some polar hosts, like single metal oxides and sulfides, have been employed as hosts to interact with polysulfide intermediates. However, due to the inherent poor electrical conductivity of these polar hosts, a relatively low specific capacity is obtained. Herein, a spinel-type bimetal sulfide NiCo2S4 through a Prussian blue analogue derived methodology is reported as the novel host of polysulfide, which enables high-performance sulfur cathode with high Coulombic efficiency and low capacity decay. Notably, the Li-S battery with NiCo2S4-S composites cathode still maintains a capacity of 667 mAh/g at 0.5 C after 300 cycles, and 399 mAh/g at 1 C after 300 cycles. Even after 300 cycles at the current density of 0.5 C, the capacity decays by 0.138% per cycle at high sulfur loading about 3 mg/cm2. And the capacity decays by 0.026% per cycle after 1000 cycles, when the rate is 1 C. More importantly, the cathode of NiCo2S4-S composite shows the outstanding discharge capacity, owing to its good conduction, high catalytic ability and the strong confinement of polysulfides.
  • 加载中
    1. [1]

      Goodenough, J. B. Evolution of strategies for modern rechargeable batteries. Accounts of Chemical Research 46, 1053–1061 (2013).  doi: 10.1021/ar2002705

    2. [2]

      Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 1, 16013 (2016).  doi: 10.1038/natrevmats.2016.13

    3. [3]

      Tang, Y., Zhang, Y., Li, W., Ma, B. & Chen, X. Rational material design for ultrafast rechargeable lithium-ion batteries. Chemical Society Reviews 44, 5926–5940 (2015).  doi: 10.1039/C4CS00442F

    4. [4]

      Li, H., Sun, L., Zhang, Y.G. et al. Enhanced cycle performance of Li/S battery with the reduced graphene oxide/activated carbon functional interlayer. Journal of Energy Chemistry 26, 1276–1281 (2017).  doi: 10.1016/j.jechem.2017.09.009

    5. [5]

      Liu, Y. T., Han, D.D., Wang, L. et al. NiCo2O4 Nanofibers as Carbon-Free Sulfur Immobilizer to Fabricate Sulfur-Based Composite with High Volumetric Capacity for Lithium–Sulfur Battery. Advanced Energy Materials 9, 1–10 (2019).
       

    6. [6]

      Manthiram, A., Chung, S. -H. & Zu, C. Lithium-Sulfur Batteries: Progress and Prospects. Advanced Materials 27, 1980–2006.

    7. [7]

      Lin, C., Niu, C.J., Xu, X. et al. A facile synthesis of three dimensional graphene sponge composited with sulfur nanoparticles for flexible Li–S cathodes. Physical Chemistry Chemical Physics 18, 22146–22153 (2016).
       

    8. [8]

      Li, F., Zhou, G.M., Pei, S.F. et al. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Advanced Materials 26, 625–631 (2014).  doi: 10.12785/amis/080220

    9. [9]

      Tang, X., Sun, Z., Yang, H. et al. Electrochemical process of sulfur in carbon materials from electrode thickness to interlayer. Journal of Energy Chemistry 31, 119–124 (2019).  doi: 10.1016/j.jechem.2018.06.001

    10. [10]

      Liang, Z. Zheng, G.Y. Li, W.Y. et al. Sulfur Cathodes with Hydrogen Reduced Titanium Dioxide Inverse Opal Structure. ACS Nano 8, 5249–5256 (2014).  doi: 10.1021/nn501308m

    11. [11]

      Song, J., Gordin, M., Xu, T. et al. Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogen-Doped Carbon Composites For High-Performance Lithium-Sulfur Battery Cathodes. Angewandte Chemie International Edition 54, 4325–4329 (2015).  doi: 10.1002/anie.201411109

    12. [12]

      Rehman, S., Gu, X., Khan, K. et al. 3D Vertically Aligned and Interconnected Porous Carbon Nanosheets as Sulfur Immobilizers for High Performance Lithium-Sulfur Batteries. Advanced Energy Materials 6, 1502518 (2016).  doi: 10.1002/aenm.201502518

    13. [13]

      Zhou, X., Chen, F. & Yang, J. Core@shell sulfur@polypyrrole nanoparticles sandwiched in graphene sheets as cathode for lithium-sulfur batteries. Journal of Energy Chemistry 24, 448–455 (2015).  doi: 10.1016/j.jechem.2015.06.011

    14. [14]

      Zhuang, X., Liu, Y., Chen, J., Chen, H. & Yi, B. Sulfur/carbon composites prepared with ordered porous carbon for Li-S battery cathode. Journal of Energy Chemistry 23, 391–396 (2014).  doi: 10.1016/S2095-4956(14)60162-5

    15. [15]

      Wang, D., Wang, K., Wu, H. et al. CO2 oxidation of carbon nanotubes for lithium-sulfur batteries with improved electrochemical performance. Carbon 132, 370–379 (2018).  doi: 10.1016/j.carbon.2018.02.048

    16. [16]

      Yuan, Z., Peng, H., Huang, J. et al. Electrodes: Hierarchical Free-Standing Carbon-Nanotube Paper Electrodes with Ultrahigh Sulfur-Loading for Lithium-Sulfur Batteries (Adv. Funct. Mater. 39/2014). Advanced Functional Materials 24, 6244–6244 (2014).
       

    17. [17]

      Sun, Q., Fang, X., Weng, W. et al. An Aligned and Laminated Nanostructured Carbon Hybrid Cathode for High-Performance Lithium-Sulfur Batteries. Angewandte Chemie 127, 10685–10690 (2015).  doi: 10.1002/ange.201504514

    18. [18]

      Li, Z., Zou, Y., Duan, J., Long, B. & Du, Y. Long-cycle stability for Li-S batteries by carbon nanofibers/reduced graphene oxide as host cathode material. Ionics 25, 1659–1668 (2019).  doi: 10.1007/s11581-019-02897-7

    19. [19]

      Li, F., Su, Y. & Zhao, J. Shuttle inhibition by chemical adsorption of lithium polysulfides in B and N co-doped graphene for Li–S batteries. Physical Chemistry Chemical Physics 18, 25241–25248 (2016).  doi: 10.1039/C6CP04071C

    20. [20]

      Zhang, H., Gao, Q., Qian, W. et al. Binary Hierarchical Porous Graphene/Pyrolytic Carbon Nanocomposite Matrix Loaded with Sulfur as a High-Performance Li–S Battery Cathode. ACS Applied Materials & Interfaces 10, 18726–18733 (2018).  doi: 10.1021/acsami.8b03806

    21. [21]

      Qiu, Y., Li, W., Li, G. et al. Polyaniline-modified cetyltrimethylammonium bromide-graphene oxide-sulfur nanocomposites with enhanced performance for lithium-sulfur batteries. Nano Research 7, 1355–1363 (2014).  doi: 10.1007/s12274-014-0500-5

    22. [22]

      Zhou, W., Wang, C., Zhang, Q. et al. Tailoring Pore Size of Nitrogen-Doped Hollow Carbon Nanospheres for Confining Sulfur in Lithium-Sulfur Batteries. Advanced Energy Materials 5, 1401752 (2015).  doi: 10.1002/aenm.201401752

    23. [23]

      Nersisyan, H., Joo, S., Yoo, B. et al. Combustion-mediated synthesis of hollow carbon nanospheres for high-performance cathode material in lithium-sulfur battery. Carbon 103, 255–262 (2016).  doi: 10.1016/j.carbon.2016.03.022

    24. [24]

      Chen, M., Su, Z., Jiang, K. et al. Promoting sulfur immobilization by a hierarchical morphology of hollow carbon nanosphere clusters for high-stability Li–S battery. Journal of Materials Chemistry A 7, 6250–6258 (2019).  doi: 10.1039/c8ta12349g

    25. [25]

      Zhang, Q., Wang, Y., Seh, Z. et al. Understanding the Anchoring Effect of Two-Dimensional Layered Materials for Lithium–Sulfur Batteries. Nano Letters 15, 3780–3786 (2015).  doi: 10.1021/acs.nanolett.5b00367

    26. [26]

      Li, S. Y., Wang, W. P., Duan, H. & Guo, Y. G. Recent progress on confinement of polysulfides through physical and chemical methods. Journal of Energy Chemistry 27, 1555–1565 (2018).  doi: 10.1016/j.jechem.2018.04.014

    27. [27]

      Seh, Z. W., Li, W., Cha, Z. et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nature Communications 4, (2013).  doi: 10.1038/ncomms2327

    28. [28]

      Xiao, Z., Yang, Z. Wang, L. et al. A Lightweight TiO2 /Graphene Interlayer, Applied as a Highly Effective Polysulfide Absorbent for Fast, Long-Life Lithium-Sulfur Batteries. Advanced Materials 27, 2891–2898 (2015).  doi: 10.1002/adma.201405637

    29. [29]

      Yuan, Z., Pemg, H., Hou, T. et al. Powering Lithium–Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts. Nano Letters 16, 519–527 (2016).  doi: 10.1021/acs.nanolett.5b04166

    30. [30]

      Seh, Z. W., Yu, J., Li, W. et al. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nature Communications 5, 5017 (2014).  doi: 10.1038/ncomms6017

    31. [31]

      Cui, Z., Zu, C., Zhou, W., Manthiram, A. & Goodenough, J. B. Mesoporous Titanium Nitride-Enabled Highly Stable Lithium-Sulfur Batteries. Advanced Materials 28, 6926–6931 (2016).  doi: 10.1002/adma.201601382

    32. [32]

      Ma, L., Yuan, H., Zhang, W. et al. Porous-Shell Vanadium Nitride Nanobubbles with Ultrahigh Areal Sulfur Loading for High-Capacity and Long-Life Lithium–Sulfur Batteries. Nano Letters 17, 7839–7846 (2017).  doi: 10.1021/acs.nanolett.7b04084

    33. [33]

      Sun, Z., Zhang, J., Yin, L. et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nature Communications 8, 1–8 (2017).  doi: 10.1038/s41467-016-0009-6

    34. [34]

      Liang, X., Rangom, Y., Kwok, C. Y., Pang, Q. & Nazar, L. F. Interwoven MXene Nanosheet/Carbon-Nanotube Composites as Li-S Cathode Hosts. Advanced Materials 29, 1603040 (2017).  doi: 10.1002/adma.201603040

    35. [35]

      Liang, X., Garsuch, A. & Nazar, L. F. Sulfur Cathodes Based on Conductive MXene Nanosheets for High-Performance Lithium-Sulfur Batteries. Angewandte Chemie 127, 3979–3983 (2015).  doi: 10.1002/ange.201410174

    36. [36]

      Pang, Q., Kundu, D. & Nazar, L. F. A graphene-like metallic cathode host for long-life and high-loading lithium–sulfur batteries. Materials Horizons 3, 130–136 (2016).  doi: 10.1039/C5MH00246J

    37. [37]

      Demir-Cakan, R., Morcrette, M., Nouar, F. et al. Cathode composites for Li-S batteries via the use of oxygenated porous architectures. Journal of the American Chemical Society 133, 16154–16160 (2011).  doi: 10.1021/ja2062659

    38. [38]

      Zhao, Z., Liang, H., Chen, J. et al. Graphene-wrapped chromium-MOF(MIL-101)/sulfur composite for performance improvement of high-rate rechargeable Li-S batteries. Journal of Materials Chemistry A 2, 13509–13512 (2014).  doi: 10.1039/C4TA01241K

    39. [39]

      Zhou, J., Li, R., Fan, X, et al. Rational design of a metal–organic framework host for sulfur storage in fast, long-cycle Li–S batteries. Energy & Environmental Science 7, 2715 (2014).  doi: 10.1039/C4EE01382D

    40. [40]

      Wang, Z., Dou, Z., Cui, Y. et al. Sulfur encapsulated ZIF-8 as cathode material for lithium–sulfur battery with improved cyclability. Microporous and Mesoporous Materials 185, 92–96 (2014).  doi: 10.1016/j.micromeso.2013.11.011

    41. [41]

      Zheng, J., Tian, J., Wu, D. et al. Lewis Acid–Base Interactions between Polysulfides and Metal Organic Framework in Lithium Sulfur Batteries. Nano Letters 14, 2345–2352 (2014).  doi: 10.1021/nl404721h

    42. [42]

      Lu, Y., Li, X., Liang, J. et al. A simple melting-diffusing-reacting strategy to fabricate S/NiS2 -C for lithium-sulfur batteries. Nanoscale 8, 17616–17622 (2016).  doi: 10.1039/C6NR05626A

    43. [43]

      Hong, X., Li, S., Tang, X., Sun, Z. & Li, F. Self-supporting porous CoS2/rGO sulfur host prepared by bottom-up assembly for lithium-sulfur batteries. Journal of Alloys and Compounds 749, 586–593 (2018).  doi: 10.1016/j.jallcom.2018.03.331

    44. [44]

      Chen, T., Zhang, Z., Cheng, B. et al. Self-Templated Formation of Interlaced Carbon Nanotubes Threaded Hollow Co3S4 Nanoboxes for High-Rate and Heat-Resistant Lithium-Sulfur Batteries. Journal of the American Chemical Society 139, 12710–12715 (2017).  doi: 10.1021/jacs.7b06973

    45. [45]

      Dai, C., Lin, J., Wang, W. et al. Honeycomb-Like Spherical Cathode Host Constructed from Hollow Metallic and Polar Co9S8 Tubules for Advanced Lithium-Sulfur Batteries. Advanced Functional Materials 28, 1704443 (2018).  doi: 10.1002/adfm.201704443

    46. [46]

      Chen, T., Ma, L., Cheng, B. et al. Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium−sulfur batteries. Nano Energy 38, 239–248 (2017).  doi: 10.1016/j.nanoen.2017.05.064

    47. [47]

      Cong, X., Cheng, C., Liao, Y. et al. Intrinsic Charge Storage Capability of Transition Metal Dichalcogenides as Pseudocapacitor Electrodes. The Journal of Physical Chemistry C 119, 20864–20870 (2015).  doi: 10.1021/acs.jpcc.5b07004

    48. [48]

      Wu, L., Tang, S. & Qu, R. Urchin-like NiCo2S4 infused sulfur as cathode for lithium–sulfur battery. Journal of Materials Science: Materials in Electronics 30, 189–199 (2019).  doi: 10.1007/s10854-018-0281-9

    49. [49]

      Yang, Y., Cheng, D., Chen, S., Guan, Y. & Xiong, J. Construction of Hierarchical NiCo2S4@Ni(OH)2 Core-Shell Hybrid Nanosheet Arrays on Ni Foam for High-Performance Aqueous Hybrid Supercapacitors. Electrochimica Acta 193, 116–127 (2016).  doi: 10.1016/j.electacta.2016.02.053

    50. [50]

      Chen, H., Jiang, J., Zhang, L. et al. In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. Journal of Power Sources 254, 249–257 (2014).  doi: 10.1360/132013-185

    51. [51]

      Zhu, Y., Ji, X., Wu, Z. & Liu, Y. NiCo2S4 hollow microsphere decorated by acetylene black for high-performance asymmetric supercapacitor. Electrochimica Acta 186, 562–571 (2015).  doi: 10.1016/j.electacta.2015.10.176

    52. [52]

      Zhao, M.Y., Zhu, L., Fu, B. et al. Sodium ion storage performance of NiCo2S4 hexagonal nanosheets. Acta Physico-Chimica Sinica 35, 193-199(2019).  doi: 10.3866/pku.whxb201801241

    53. [53]

      Chen, H., Ma, X., Shen, P. K. et al. NiCo2S4 nanocores in-situ encapsulated in graphene sheets as anode materials for lithium-ion batteries. Chemical Engineering Journal 364, 167-176(2019).  doi: 10.1016/j.cej.2019.01.119

    54. [54]

      Chuan, X., Peng, L., Appala N.G. et al. Is NiCo2S4 really a semiconductor? Chemistry of Materials 27, 6482-6485 (2015).  doi: 10.1021/acs.chemmater.5b01843

    55. [55]

      Fan, Q., Liu, W., Weng, Zh. et al. Ternary Hybrid Material for High-Performance Lithium-Sulfur Battery. Journal of the American Chemical Society 137, 12946-12953 (2015).  doi: 10.1021/jacs.5b07071

    56. [56]

      Liu, B., Huang, S., Kong, D., Hu, J. & Yang, H. Y. Bifunctional NiCo2S4 catalysts supported on a carbon textile interlayer for ultra-stable Li-S battery. Journal of Materials Chemistry A 7, 7604–7613 (2019).  doi: 10.1039/c9ta00701f

    57. [57]

      Chiochan, P., Phattharasupakun, N., Wutthiprom, J. et al. Core-double shell sulfur@carbon black nanosphere@oxidized carbon nanosheet composites as the cathode materials for Li-S batteries. Electrochimica Actav 237, 78-86 (2017).  doi: 10.1016/j.electacta.2017.03.199

    58. [58]

      Yang, W., Yang, W., Feng, J. & Qin, X. A polypyrrole-coated acetylene black/sulfur composite cathode material for lithium–sulfur batteries. Journal of Energy Chemistry 27, 813–819 (2018).  doi: 10.1016/j.jechem.2017.05.007

    59. [59]

      Tong, W., Huang, Y., Jia, W. et al. Leaf-like interconnected network structure of MWCNT/Co9S8/S for lithium-sulfur batteries. Journal of Alloys and Compounds 731, 964-970 ((2017).

    60. [60]

      Shen, J., Liu, J., Liu, Z. et al. Nanoconfined Oxidation Synthesis of N‐Doped Carbon Hollow Spheres and MnO 2 Encapsulated Sulfur Cathode for Superior Li‐S Batteries. Chemistry – A European Journal 24, 4573–4582 (2018).  doi: 10.1002/chem.201704590

    61. [61]

      Tan, X., Wang, X., Wang, X. et al. NiCo2S4 yolk-shell hollow spheres with physical and chemical interaction toward polysulfides for advanced lithium-sulfur batteries. Ionics 25, 4047 (2019).  doi: 10.1007/s11581-019-02969-8

    62. [62]

      Lu, X., Zhang, Q., Wang, J. et al. High performance bimetal sulfides for lithium-sulfur batteries. Chemical Engineering Journal 358, 955–961 (2019).  doi: 10.1016/j.cej.2018.10.104

    63. [63]

      Zhenzhen, L., Lei, Zh., Qi, G. et al. Atomic iron catalysis of polysulfide conversion in lithium–sulfur batteries. ACS Applied Materials & Interfaces 10 (23), 19311-19317 (2018).  doi: 10.1021/acsami.8b03830

    64. [64]

      Kong, L., Chen, X., Li, B. ‐Q., et al. A bifunctional perovskite promoter for polysulfide regulation toward stable lithium–sulfur batteries. Adv. Mater. 30, 1705219-1705225(2018).  doi: 10.1002/adma.201705219

  • 加载中
    1. [1]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2024.100192

    2. [2]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    3. [3]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    4. [4]

      Xing Xiao Yunling Jia Wanyu Hong Yuqing He Yanjun Wang Lizhi Zhao Huiqin An Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474

    5. [5]

      Jun JiangTong GuoWuxin BaiMingliang LiuShujun LiuZhijie QiJingwen SunShugang PanAleksandr L. VasilievZhiyuan MaXin WangJunwu ZhuYongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565

    6. [6]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    7. [7]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    8. [8]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    9. [9]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    10. [10]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    11. [11]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    12. [12]

      Yufeng WuMingjun JingJuan LiWenhui DengMingguang YiZhanpeng ChenMeixia YangJinyang WuXinkai XuYanson BaiXiaoqing ZouTianjing WuXianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269

    13. [13]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    14. [14]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    15. [15]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    16. [16]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    17. [17]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    18. [18]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    19. [19]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    20. [20]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

Metrics
  • PDF Downloads(3)
  • Abstract views(524)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return