Citation: Peng Sha, Song Yan-Xi, He Jun-Yi, Tang Shan-Shan, Tan Jia-Xi, Cao Zhong, Lin Ying-Wu, He Wei-Min. TsCl-promoted sulfonylation of quinoline N-oxides with sodium sulfinates in water[J]. Chinese Chemical Letters, ;2019, 30(12): 2287-2290. doi: 10.1016/j.cclet.2019.08.002 shu

TsCl-promoted sulfonylation of quinoline N-oxides with sodium sulfinates in water

    * Corresponding author.
    E-mail address: weiminhe2016@yeah.net (W.-M. He).
  • Received Date: 7 July 2019
    Revised Date: 24 July 2019
    Accepted Date: 31 July 2019
    Available Online: 5 December 2019

Figures(4)

  • An eco-friendly protocol for the synthesis of various 2-sulfonyl quinolines/pyridines through sulfonylation of heteroaromatic N-oxides with sodium sulfinates in water at ambient temperature under metal-and oxidant-free conditions has been developed. The mild reaction conditions, high reaction efficiency, operational simplicity, short reaction time and remarkable functional-group compatibility make the developed protocol very attractive for the preparation of 2-sulfonyl N-heteroaromatic compounds.
  • 加载中
    1. [1]

      (a) Y. Sun, A. Abdukader, D. Lu, H. Zhang, C. Liu, Green Chem. 19 (2017) 1255-1258;
      (b) D.Q. Dong, S.H. Hao, H. Zhang, Z.L. Wang, Chin. Chem. Lett. 28 (2017) 1597-1599;
      (c) W. Wei, H. Cui, D. Yang, et al., Green Chem. 19 (2017) 5608-5613;
      (d) J. Yang, F. Mei, S. Fu, Y. Gu, Green Chem. 20 (2018) 1367-1374;
      (e) P. Bao, L. Wang, Q. Liu, et al., Tetrahedron Lett. 60 (2019) 214-218;
      (f) L. Cao, J.X. Li, H.Q. Wu, et al., ACS Sustain. Chem. Eng. 6 (2018) 4147-4153;
      (g) Y. Zheng, M. Liu, G. Qiu, W. Xie, J. Wu, Tetrahedron 75 (2019) 1663-1668;
      (h) W. Wei, P. Bao, H. Yue, et al., Org. Lett. 20 (2018) 5291-5295;
      (i) J. Li, W. Tang, D. Ren, J. Xu, Z. Yang, Green Chem. 21 (2019) 2088-2094;
      (j) K. Sun, S.J. Li, X.L. Chen, et al., Chem. Commun. 55 (2019) 2861-2864;
      (k) K. Chen, W.-J. Hao, S.-J. Tu, et al., Green Chem. 21 (2019) 675-683;
      (l) L. Peng, Z. Hu, Z. Tang, Y. Jiao, X. Xu, Chin. Chem. Lett. 30 (2019) 1481-1487;
      (m) L. Peng, Z. Hu, Q. Lu, et al., Chin. Chem. Lett. (2019), doi: http://dx.doi.org/10.1016/j.cclet.2019.05.063;
      (n) W.T. Wei, W.M. Zhu, Q. Shao, et al., ACS Sustain. Chem. Eng. 6 (2018) 8029-8033;
      (o) C. Zhu, D. Wei, Y. Wu, et al., J. Alloys Compd. 778 (2019) 731-740;
      (p) H.K. Sha, F. Liu, J. Lu, et al., Green Chem. 20 (2018) 3476-3485.

    2. [2]

      (a) W. Xie, S. Xie, Y. Zhou, et al., Eur. J. Med. Chem. 81 (2014) 22-27;
      (b) L. Wang, D. Xiong, L. Jie, C. Yu, X. Cui, Chin. Chem. Lett. 29 (2018) 907-910;
      (c) Y. Zhang, K. Sun, Q. Lv, et al., Chin. Chem. Lett. 30 (2019) 1361-1368;
      (d) W. Xie, Y. Wu, J. Zhang, et al., Eur. J. Med. Chem. 145 (2018) 35-40;
      (e) Y. Liu, X.L. Chen, K. Sun, et al., Org. Lett. 21 (2019) 4019-4024;
      (f) Q. Liu, L. Wang, H. Yue, et al., Green Chem. 21 (2019) 1609-1603;
      (g) J. Wang, K. Sun, X. Chen, et al., Org. Lett. 21 (2019) 1863-1867;
      (h) S. Ye, T. Xiang, X. Li, J. Wu, Org. Chem. Front. 6 (2019) 2183-2199;
      (i) X. Gong, G. Li, Z. Gan, et al., Asian J. Org. Chem. 8 (2019) 1472-1478;
      (j) F.S. He, Y. Wu, X. Li, H. Xia, J. Wu, Org. Chem. Front. 6 (2019) 1873-1878;
      (k) Q. Zhu, C. Liu, L. Zhou, et al., Biosens. Bioelectron. 140 (2019) 175-182;
      (l) X.C. Liu, K. Sun, X. Chen, et al., Adv. Synth. Catal. 361 (2019) 3965-3973;
      (m) B.Z. Tang, J.Z. Li, A.W. Zhang, et al., Adv. Synth. Catal. 361 (2019) 3394-3402;
      (o) H.P.Zhao, X.P.Ma, S.M.Nie, Y.Xiao, D.L.Mo, Org.Chem.Front.6 (2019)2334-2338;
      (p) F. Zhang, Q. Lai, X. Shi, Z. Song, Chin. Chem. Lett. 30 (2019) 392-394;
      (q) R. Fu, M.-F. Li, P. Zhou, et al., Adv. Synth. Catal. 361 (2019) 2280-2285;
      (r)Q.Huang, L.Zhu, D.Yi, X.Zhao, W.Wei, Chin.Chem.Lett.(2019), doi: http://dx.doi.org/10.1016/j.cclet.2019.07.049.

    3. [3]

      (a) R. Zhang, S. Luo, Chin. Chem. Lett. 29 (2018) 1193-1200;
      (b) X.M. Chu, C. Wang, W. Liu, et al., Eur. J. Med. Chem. 161 (2019) 101-117.

    4. [4]

      (a) Z. Wu, C. Pi, X. Cui, J. Bai, Y. Wu, Adv. Synth. Catal. 355 (2013) 1971-1976;
      (b) C. Zhu, M. Yi, D. Wei, et al., Org. Lett. 16 (2014) 1840-1843;
      (c) X. Chen, X. Li, Z. Qu, et al., Adv. Synth. Catal. 356 (2014) 1979-1985;
      (d) H. Wang, X. Cui, Y. Pei, et al., Chem. Commun. 50 (2014) 14409-14411;
      (e) Q. Zhang, D. Wei, X. Cui, et al., Tetrahedron 71 (2015) 6087-6093;
      (f) J.W. Yuan, L.B. Qu, Chin. Chem. Lett. 28 (2017) 981-985;
      (g) X. Chen, F. Yang, X. Cui, Y. Wu, Adv. Synth. Catal. 359 (2017) 3922-3926;
      (h) W.Z. Bi, C. Qu, X.L. Chen, et al., Eur. J. Org. Chem. 2017 (2017) 5125-5130;
      (i) J.W. Yuan, W.J. Li, Y.M. Xiao, Tetrahedron 73 (2017) 179-186;
      (j) Z. Zhang, C. Pi, H. Tong, X. Cui, Y. Wu, Org. Lett. 19 (2017) 440-443;
      (k) W.Z. Bi, K. Sun, C. Qu, et al., Org. Chem. Front. 4 (2017) 1595-1600;
      (l) Z. Wang, M.Y. Han, P. Li, L. Wang, Eur. J. Org. Chem. 2018 (2018) 5954-5960;
      (m) G.H. Li, D.Q. Dong, Y. Yang, X.Y. Yu, Z.L. Wang, Adv. Synth. Catal. 361 (2019) 832-835;
      (n) M.Lai, K.Zhai, C.Cheng, Z.Wu, M.Zhao, Org.Chem.Front.5 (2018)2986-2991;
      (o) G.H. Li, D.Q. Dong, X.Y. Yu, Z.L. Wang, New J. Chem. 43 (2019) 1667-1670;
      (p) S. Han, X. Gao, Q. Wu, et al., Org. Chem. Front. 6 (2019) 830-834;
      (q)H.MuhammadMehwish, X.L.Chen, B.Yu, L.B.Qu, Y.F.Zhao, PureAppl.Chem.91 (2019) 33-41;
      (r) A.K. Dhiman, D. Chandra, R. Kumar, U. Sharma, J. Org. Chem. 84 (2019) 6962-6969;
      (s) S. Du, C. Pi, T. Wan, Y. Wu, X. Cui, Adv. Synth. Catal. 361 (2019) 1766-1770.

    5. [5]

      J. Wu, X. Cui, L. Chen, G. Jiang, Y. Wu, J. Am. Chem. Soc.131 (2009) 13888-13889.  doi: 10.1021/ja902762a

    6. [6]

      (a) G. Li, Z. Gan, K. Kong, X. Dou, D. Yang, Adv. Synth. Catal. 361 (2019) 1808-1814;
      (b) J. Zhang, W. Xie, S. Ye, J. Wu, Org. Chem. Front. 6 (2019) 2254-2259;
      (c) S. Ye, X. Li, W. Xie, J. Wu, Asian J. Org. Chem. 8 (2019) 893-898;
      (d) X.M. Xu, D.M. Chen, Z.L. Wang, Chin. Chem. Lett. (2019), doi: http://dx.doi.org/10.1016/j.cclet.2019.05.048;
      (e) J. Zhang, X. Li, W. Xie, S. Ye, J. Wu, Org. Lett. 21 (2019) 4950-4954;
      (f) G.H. Li, D.Q. Dong, Q. Deng, S.Q. Yan, Z.L. Wang, Synthesis 51 (2019) 3319-3319;
      (g) L. Wang, Y. Zhang, M. Zhang, et al., Tetrahedron Lett. 60 (2019) 1845-1848;
      (h) L. Wang, M. Zhang, Y. Zhang, et al., Chin. Chem. Lett. (2019), doi: http://dx.doi.org/10.1016/j.cclet.2019.05.041;
      (i) X. Gong, X. Li, W. Xie, J. Wu, S. Ye, Org. Chem. Front. 6 (2019) 1863-1867;
      (j) Y. Zong, Y. Lang, M. Yang, et al., Org. Lett. 21 (2019) 1935-1938.

    7. [7]

      (a) Z. Wu, H. Song, X. Cui, et al., Org. Lett. 15 (2013) 1270-1273;
      (b) K. Sun, X.L. Chen, X. Li, et al., Chem. Commun. 51 (2015) 12111-12114;
      (c) B. Du, P. Qian, Y. Wang, et al., Org. Lett. 18 (2016) 4144-4147;
      (d) W.K. Fu, K. Sun, C. Qu, et al., Asian J. Org. Chem. 6 (2017) 492-495;
      (e) H. Ma, S. Liu, S. Zhu, et al., Phosphorus Sulfur Silicon 192 (2017) 887-895;
      (f) L.Y. Xie, S. Peng, F. Liu, et al., Org. Chem. Front. 5 (2018) 2604-2609;
      (g) L. Sumunnee, C. Buathongjan, C. Pimpasri, S. Yotphan, Eur. J. Org. Chem. 2017 (2017) 1025-1032.

    8. [8]

      (a) C. Wu, L.H. Lu, A.Z. Peng, et al., Green Chem. 20 (2018) 3683-3688;
      (b) L.Y. Xie, T.G. Fang, J.X. Tan, et al., Green Chem. 21 (2019) 3858-3863;
      (c) C. Wu, Z. Wang, Z. Hu, et al., Org. Biomol. Chem. 16 (2018) 3177-3180;
      (d) W.H. Bao, C. Wu, J.T. Wang, et al., Org. Biomol. Chem. 16 (2018) 8403-8407;
      (e) W.H. Bao, Z. Wang, X. Tang, et al., Chin. Chem. Lett. (2019), doi: http://dx.doi.org/10.1016/j.cclet.2019.06.052;
      (f) L.H. Lu, Z. Wang, W. Xia, et al., Chin. Chem. Lett. 30 (2019) 1237-1240;
      (g) L.Y. Xie, S. Peng, T.G. Fan, et al., Sci. China Chem. 62 (2019) 460-464;
      (h) L.-Y. Xie, Y. Duan, L.-H. Lu, et al., ACS Sustain. Chem. Eng. 5 (2017) 10407-10412;
      (i) K.J. Liu, Z.H. Duan, X.L. Zeng, et al., ACS Sustain. Chem. Eng. 7 (2019) 10293-10298;
      (j) L.Y. Xie, L.L. Jiang, J.X. Tan, et al., ACS Sustain. Chem. Eng. 7 (2019) 14153-14160.

  • 加载中
    1. [1]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    2. [2]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    3. [3]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    4. [4]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    5. [5]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    6. [6]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    7. [7]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    8. [8]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    9. [9]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    10. [10]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    11. [11]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    12. [12]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    13. [13]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    14. [14]

      Dongmei DaiXiaobing LaiXiaojuan WangYunting YaoMengmin JiaLiang WangPengyao YanYaru QiaoZhuangzhuang ZhangBao LiDai-Huo Liu . Increasing (010) active plane of P2-type layered cathodes with hexagonal prism towards improved sodium-storage. Chinese Chemical Letters, 2024, 35(10): 109405-. doi: 10.1016/j.cclet.2023.109405

    15. [15]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    16. [16]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    17. [17]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    18. [18]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    19. [19]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    20. [20]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

Metrics
  • PDF Downloads(4)
  • Abstract views(601)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return