Nanocrystals for large Stokes shift-based optosensing
-
*Corresponding authors.
E-mail addresses: yangqin@scu.edu.cn (Q. Yang), wupeng@scu.edu.cn (P. Wu)
Citation: Zhou Ronghui, Lu Xiaomei, Yang Qin, Wu Peng. Nanocrystals for large Stokes shift-based optosensing[J]. Chinese Chemical Letters, ;2019, 30(10): 1843-1848. doi: 10.1016/j.cclet.2019.07.062
J.R. Lakowicz, Princples of Flourescence Spectroscopy, 3rd ed., Springer, 2006.
J. Jung, C.H. Lin, Y.J. Yoon, et al., Angew. Chem. Int. Ed. 55 (2016) 5071-5075.
doi: 10.1002/anie.201601198
H. Wu, Y. Zhang, M. Lu, et al., J. Nanopart. Res. 18 (2016) 206.
Y.N. Hong, J.W.Y. Lam, B.Z. Tang, Chem. Soc. Rev. 40 (2011) 5361-5388.
doi: 10.1039/c1cs15113d
G. Gao, Y.W. Jiang, W. Sun, F.G. Wu, Chin. Chem. Lett. 29 (2018) 1475-1485.
doi: 10.1016/j.cclet.2018.07.004
D. Yao, Y. Liu, J. Li, H. Zhang, Chin. Chem. Lett. 30 (2019) 277-284.
doi: 10.1016/j.cclet.2018.07.012
Y.Q. Li, C.Y. Xu, C. Shu, X.D. Hou, P. Wu, Chin. Chem. Lett. 28 (2017) 1961-1964.
doi: 10.1016/j.cclet.2017.04.027
F. Poulsen, T. Hansen, J. Phys. Chem. C 121 (2017) 13655-13659.
doi: 10.1021/acs.jpcc.7b01792
S. Mandal, A.C. Reber, M.C. Qian, et al., Acc. Chem. Res. 46 (2013) 2385-2395.
doi: 10.1021/ar3002975
M. Anni, E. Alemanno, A. Creti, et al., J. Phys. Chem. A 114 (2010) 2086-2090.
doi: 10.1021/jp906860c
Z. Krumer, S.J. Pera, R.J.A. van Dijk-Moes, et al., Sol. Energy Mater. Sol. Cells 111 (2013) 57-65.
doi: 10.1016/j.solmat.2012.12.028
J.Y. Zhang, R.H. Zhou, D.D. Tang, X.D. Hou, P. Wu, Trends Anal. Chem. 110 (2019) 183-190.
doi: 10.1016/j.trac.2018.11.002
A.R. Clapp, I.L. Medintz, J.M. Mauro, et al., J. Am. Chem. Soc. 126 (2004) 301-310.
doi: 10.1021/ja037088b
P.R. Selvin, Methods Enzymol. 246 (1995) 300-334.
doi: 10.1016/0076-6879(95)46015-2
R.H. Zhou, S.K. Sun, C.H. Li, et al., ACS Appl. Mater. Interfaces 10 (2018) 34060-34067.
doi: 10.1021/acsami.8b14554
M. Li, C.Y. Xu, L. Wu, P. Wu, X.D. Hou, Chem. Commun. 51 (2015) 3552-3555.
doi: 10.1039/C4CC10127H
P. Wu, X.P. Yan, Chem. Soc. Rev. 42 (2013) 5489-5521.
doi: 10.1039/c3cs60017c
D. Lei, Y.T. Shen, Y.Y. Feng, W. Feng, Sci. China-Technol. Sci. 55 (2012) 903-912.
doi: 10.1007/s11431-011-4717-1
G.Y. Chen, J. Shen, T.Y. Ohulchanskyy, et al., ACS Nano 6 (2012) 8280-8287.
doi: 10.1021/nn302972r
L.H. Gao, F.M. Gao, Appl. Phys. Lett. 103 (2013)053101.
doi: 10.1063/1.4816972
Z.Y. He, Z.H. Jin, M. Zhan, et al., Chin. Chem. Lett. 28 (2017) 1851-1856.
doi: 10.1016/j.cclet.2017.07.012
V. Chikan, J. Phys. Chem. Lett. 2 (2011) 2783-2789.
doi: 10.1021/jz2012325
D.J. Norris, A.L. Efros, S.C. Erwin, Science 319 (2008) 1776-1779.
doi: 10.1126/science.1143802
D. Mocatta, G. Cohen, J. Schattner, et al., Science 332 (2011) 77-81.
doi: 10.1126/science.1196321
M. Makkar, R. Viswanatha, RSC Adv. 8 (2018) 22103-22112.
doi: 10.1039/C8RA03530J
X.L. Ren, M.Q. Wang, X. He, et al., Chin. Chem. Lett. 29 (2018) 1865-1868.
doi: 10.1016/j.cclet.2018.12.007
C.S. Erickson, L.R. Bradshaw, S. McDowall, et al., ACS Nano 8 (2014) 3461-3467.
doi: 10.1021/nn406360w
M. Sharma, K. Gungor, A. Yeltik, et al., Adv. Mater. 29 (2017) 1700821.
doi: 10.1002/adma.201700821
N. Pradhan, S. Das Adhikari, A. Nag, D.D. Sarma, Angew. Chem. Int. Ed. 56 (2017) 7038-7054.
doi: 10.1002/anie.201611526
R. Beaulac, P.I. Archer, S.T. Ochsenbein, D.R. Gamelin, Adv. Funct. Mater. 18 (2008) 3873-3891.
doi: 10.1002/adfm.200801016
R.H. Zhou, M. Li, S.L. Wang, et al., Nanoscale 6 (2014) 14319-14325.
doi: 10.1039/C4NR04473H
J.Y. Zhang, D.D. Tang, Y.D. Yao, X.D. Hou, P. Wu, Nanoscale10 (2018) 9236-9244.
doi: 10.1039/C8NR02151A
X.M. Lu, J.Y. Zhang, Y.N. Xie, et al., Anal. Chem. 90 (2018) 2939-2945.
doi: 10.1021/acs.analchem.7b05365
J.Y. Zhang, X.M. Lu, Y. Lei, X.D. Hou, P. Wu, Nanoscale 9 (2017) 15606-15611.
doi: 10.1039/C7NR03673F
H.B. Shen, H.Z. Wang, X.M. Li, et al., Dalton Trans. (2009) 10534-10540.
S. Jana, B.B. Srivastava, S. Acharya, et al., Chem. Commun. 46 (2010) 2853-2855.
doi: 10.1039/b925980e
H. Zhong, Z. Bai, B. Zou, J. Phys. Chem. Lett. 3 (2012) 3167-3175.
doi: 10.1021/jz301345x
N.X. Ca, N.T. Hien, N.T. Luyen, et al., J. Alloy Compd. 787 (2019) 823-830.
doi: 10.1016/j.jallcom.2019.02.139
X. Zhong, M. Han, Z. Dong, T.J. White, W. Knoll, J. Am. Chem. Soc. 125 (2003) 8589-8594.
doi: 10.1021/ja035096m
R.E. Bailey, S.M. Nie, J. Am. Chem. Soc. 125 (2003) 7100-7106.
doi: 10.1021/ja035000o
A.M. Smith, S.M. Nie, J. Am. Chem. Soc. 133 (2011) 24-26.
doi: 10.1021/ja108482a
M.D. Regulacio, M.Y. Han, Acc. Chem. Res. 43 (2010) 621-630.
doi: 10.1021/ar900242r
K. Boldt, N. Kirkwood, G.A. Beane, P. Mulvaney, Chem. Mat. 25 (2013) 4731-4738.
doi: 10.1021/cm402645r
N.P. Gurusinghe, N.N. Hewa-Kasakarage, M. Zamkov, J. Phys. Chem. C 112 (2008) 12795-12800.
L. de Trizio, M. Prato, A. Genovese, et al., Chem. Mat. 24 (2012) 2400-2406.
doi: 10.1021/cm301211e
L.Y. Chen, C.W. Wang, Z.Q. Yuan, H.T. Chang, Anal. Chem. 87 (2015) 216-229.
doi: 10.1021/ac503636j
J.T. Petty, S.P. Story, J.C. Hsiang, R.M. Dickson, J. Phys. Chem. Lett. 4 (2013) 1148-1155.
doi: 10.1021/jz4000142
S. Ozkar, R.G. Finke, J. Am. Chem. Soc. 124 (2002) 5796-5810.
doi: 10.1021/ja012749v
C.M. Aikens, Acc. Chem. Res. 51 (2018) 3065-3073.
doi: 10.1021/acs.accounts.8b00364
I. Diez, M. Pusa, S. Kulmala, et al., Angew. Chem. Int. Ed. 48 (2009) 2122-2125.
doi: 10.1002/anie.200806210
B. Santiago-Gonzalez, C. Vazquez-Vazquez, M.C. Blanco-Varela, et al., J. Colloid Interface Sci. 455 (2015) 154-162.
doi: 10.1016/j.jcis.2015.05.042
A.L.Wen, X.X.Peng, P.P.Zhang, etal., Anal.Bioanal.Chem.410 (2018)6489-6495.
doi: 10.1007/s00216-018-1246-9
T.Z. Li, Z.G. Wang, D.F. Jiang, et al., Sens. Actuators B-Chem. 290 (2019) 535-543.
doi: 10.1016/j.snb.2019.04.033
R.H. Zhou, Y.Q. Li, Y.Y. Tian, et al., Nanoscale 9 (2017) 10167-10172.
doi: 10.1039/C7NR03566G
J.T. Xu, A. Gulzar, P.P. Yang, et al., Coord. Chem. Rev. 381 (2019) 104-134.
doi: 10.1016/j.ccr.2018.11.014
Y. Qiao, S.H. Li, W.H. Liu, et al., Nanomaterials 8 (2018) 43.
doi: 10.3390/nano8010043
E. Hemmer, A. Benayas, F. Legare, F. Vetrone, Nanoscale Horiz. 1 (2016) 168-184.
doi: 10.1039/C5NH00073D
X.L. Lei, R.F. Li, D.T. Tu, et al., Chem. Sci. 9 (2018) 4682-4688.
doi: 10.1039/C8SC00927A
Y.F. Wang, G.Y. Liu, L.D. Sun, et al., ACS Nano 7 (2013) 7200-7206.
doi: 10.1021/nn402601d
Z.Y. Wang, H. Jiao, Z.L. Fu, Inorg. Chem. 57 (2018) 8841-8849.
doi: 10.1021/acs.inorgchem.8b00739
D.J. Naczynski, M.C. Tan, M. Zevon, et al., Nat. Commun. 4 (2013) 2199.
doi: 10.1038/ncomms3199
W. Shao, G. Chen, A. Kuzmin, et al., J. Am. Chem. Soc.138 (2016) 16192-16195.
doi: 10.1021/jacs.6b08973
Y. Fan, P. Wang, Y. Lu, et al., Nat. Nanotechnol. 13 (2018) 941-946.
doi: 10.1038/s41565-018-0221-0
Y. Feng, Q. Xiao, Y. Zhang, et al., J. Mater. Chem. B 5 (2017) 504-510.
doi: 10.1039/C6TB01961G
H. Zhang, Y. Fan, P. Pei, et al., Angew. Chem. Int. Ed. 58 (2019) 10153-10157.
doi: 10.1002/anie.201903536
N. Venkatachalam, T. Yamano, E. Hemmer, et al., J. Am. Ceram. Soc. 96 (2013) 2759-2765.
doi: 10.1111/jace.12476
U. Rocha, C. Jacinto, W.F. Silva, et al., ACS Nano 7 (2013) 1188-1199.
doi: 10.1021/nn304373q
Z.F. Yu, J.P. Shi, J.L. Li, P.H. Li, H.W. Zhang, J. Mater. Chem. B 6 (2018) 1238-1243.
doi: 10.1039/C7TB03052E
S.F. Wang, L. Liu, Y. Fan, et al., Nano Lett. 19 (2019) 2418-2427.
doi: 10.1021/acs.nanolett.8b05148
Y. Wang, B. Wu, C. Yang, et al., Small 12 (2015) 534-546.
V.K. Sharma, S. Gokyar, Y. Kelestemur, et al., Small 10 (2014) 4961-4966.
doi: 10.1002/smll.201401143
X. Sun, X. Huang, J. Guo, et al., J. Am. Chem. Soc. 136 (2014) 1706-1709.
doi: 10.1021/ja410438n
Chuanfeng Fan , Jian Gao , Yingkai Gao , Xintong Yang , Gaoning Li , Xiaochun Wang , Fei Li , Jin Zhou , Haifeng Yu , Yi Huang , Jin Chen , Yingying Shan , Li Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838
Wenkai Liu , Yanxian Hou , Weijian Liu , Ran Wang , Shan He , Xiang Xia , Chengyuan Lv , Hua Gu , Qichao Yao , Qingze Pan , Zehou Su , Danhong Zhou , Wen Sun , Jiangli Fan , Xiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631
Yiyang Shen , Zhen Zhang , Ruyi Liang , Tongbo Wu . Unraveling the interplay of DNAzyme and interfacial factors for enhanced biosensing. Chinese Chemical Letters, 2024, 35(12): 109638-. doi: 10.1016/j.cclet.2024.109638
Erzhuo Cheng , Yunyi Li , Wei Yuan , Wei Gong , Yanjun Cai , Yuan Gu , Yong Jiang , Yu Chen , Jingxi Zhang , Guangquan Mo , Bin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386
Chuang LIU , Lichao SUN , Qingfeng ZHANG . Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 59-78. doi: 10.11862/CJIC.20240406
Zhaojun Liu , Zerui Mu , Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156
Fei Yin , Erli Yang , Xue Ge , Qian Sun , Fan Mo , Guoqiu Wu , Yanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753
Yiming Yang , Lichao Sun , Qingfeng Zhang . Plasmonic nanocrystals with intrinsic chirality: Biomolecule-directed synthesis and applications. Chinese Journal of Structural Chemistry, 2025, 44(1): 100467-100467. doi: 10.1016/j.cjsc.2024.100467
Ji Chen , Yifan Zhao , Shuwen Zhao , Hua Zhang , Youyu Long , Lingfeng Yang , Min Xi , Zitao Ni , Yao Zhou , Anran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268
Rui Cheng , Xin Huang , Tingting Zhang , Jiazhuang Guo , Jian Yu , Su Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
Jiajing Wu , Ru-Ling Tang , Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291
Yan Wang , Si-Meng Zhai , Peng Luo , Xi-Yan Dong , Jia-Yin Wang , Zhen Han , Shuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493
Lihua Gao , Yinglei Han , Chensheng Lin , Huikang Jiang , Guang Peng , Guangsai Yang , Jindong Chen , Ning Ye . Halogen-assisted octet binding electrons construction of pnictogens towards wide-bandgap nonlinear optical pnictides. Chinese Chemical Letters, 2024, 35(12): 109529-. doi: 10.1016/j.cclet.2024.109529
Weiping Guo , Ying Zhu , Hong-Hua Cui , Lingyun Li , Yan Yu , Zhong-Zhen Luo , Zhigang Zou . β-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Tsegaye Tadesse Tsega , Jiantao Zai , Chin Wei Lai , Xin-Hao Li , Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2024.100192
Kang Wang , Qinglin Zhou , Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325
Rongliang Deng , Yihang Chen , Xiaotong Fan , Guolong Chen , Shuli Wang , Changzhi Yu , Xiao Yang , Tingzhu Wu , Zhong Chen , Yue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346