Citation: Liu Na, Shi Liangfeng, Han Xianghao, Qi Qiao-Yan, Wu Zong-Quan, Zhao Xin. A heteropore covalent organic framework for adsorptive removal of Cd(Ⅱ) from aqueous solutions with high efficiency[J]. Chinese Chemical Letters, ;2020, 31(2): 386-390. doi: 10.1016/j.cclet.2019.06.050 shu

A heteropore covalent organic framework for adsorptive removal of Cd(Ⅱ) from aqueous solutions with high efficiency

    * Corresponding authors.
    E-mail addresses: zqwu@hfut.edu.cn (Z.-Q. Wu), xzhao@sioc.ac.cn (X. Zhao).
    1 These authors contributed equally to this work.
  • Received Date: 7 May 2019
    Revised Date: 18 June 2019
    Accepted Date: 27 June 2019
    Available Online: 27 June 2019

Figures(5)

  • A heteropore covalent organic framework (COF) integrating tetraphenylethene skeleton and catechol segment is designed and synthesized. It exhibits extremely high stability in water under different pH conditions, which makes it an excellent material for adsorptive removal of Cd(Ⅱ) from aqueous solutions with very fast adsorption kinetics, high uptake capacity, and good recyclability.
  • 加载中
    1. [1]

      (a) R.P. Schwarzenbach, B.I. Escher, K. Fenner, et al., Science 313 (2006) 1072-1077;
      (b) M.P. Waalkes, J. Inorg, Biochem. 79 (2000) 241-244;
      (c) M. Hua, S. Zhang, B. Pan, et al., J. Hazard. Mater. 211-212 (2012) 317-331;
      (d) P. Miretzky, A.F. Cirelli, J. Hazard. Mater. 167 (2009) 10-23;
      (e) M.T. Hayat, M. Nauman, N. Nazir, S.Ali N. Bangash, Environmental hazards of cadmium: past, present, and future, in: M. Hasanuzzaman, M.N.V. Prasad, M. Fujita (Eds.), Cadmium Toxicity and Tolerance in Plants, Academic Press, New York, 2019, pp. 163-183;
      (f) H. Liu, G. Liu, Z. Yuan, et al., Mar. Pollut. Bull. 140 (2019) 388-394;
      (g) P.K. Samantaray, S. Baloda, G. Madras, S. Bose, J. Mater. Chem. A 6 (2018) 16664-16679.

    2. [2]

      (a) H. Yamada, T. Miyahara, Y. Sasaki, Mutat. Res. Lett. 302 (1993) 137-145;
      (b) I.A. Darwish, D.A. Blake, Anal. Chem. 73 (2001) 1889-1895;
      (c) K. Nogawa, E. Kobayashi, Y. Okubo, Y. Suwazono, Biometals 17 (2004) 581-587;
      (d) S. Khan, Q. Cao, Y.M. Zheng, Y.Z. Huang, Y.G. Zhu, Environ. Pollut. 152 (2008) 686-692;
      (e) R. Zha, R. Nadimicherla, X. Guo, J. Mater. Chem A 2 (2014) 13932-13941.

    3. [3]

      (a) S. Rodrigues, N. Munichandraiah, A.K. Shukla, J. Power Sources 87 (2000) 12-20;
      (b) S. Ghatak, G. Chakraborty, M. Sinha, S.K. Pradhan, A.K. Meikap, Physica B 406 (2011) 3261-3266.

    4. [4]

      (a) C. Zhu, Y. Guo, Y. Yang, et al., J. Environ. Eng. Technol. 8 (2018) 58-64;
      (b) Y. Lan, R. Liang, X. Zhao, et al., Acta Sci. Circumstantiae 37 (2017) 3602-3612.

    5. [5]

      (a) A. Özverdi, M. Erdem, J. Hazard. Mater. B 137 (2006) 626-632;
      (b) J. Koelmel, M.N.V. Prasad, G. Velvizhi, S.K. Butti, S.V. Mohan, Metalliferous waste in India and knowledge explosion in metal recovery techniques and processes for the prevention of pollution, in: M.N.V. Prasad, K. Shih (Eds.), Environmental Materials and Waste, Academic Press, New York, 2016, pp. 339-390;
      (c) D. Purkayastha, U. Mishra, S. Biswas, J. Water Process. Eng. 2 (2014) 105-128;
      (d) F. Fu, Q. Wang, J. Environ. Manag. 92 (2011) 407-418.

    6. [6]

      (a) J. Shao, J.D. Gu, L. Peng, et al., J. Hazard. Mater. 272 (2014) 83-88;
      (b) M.Q. Jiang, X.Y. Jin, X.Q. Lu, Z.L. Chen, Desalination 252 (2010) 33-39;
      (c) P. Pavasant, R. Apiratikul, V. Sungkhum, et al., Bioresour. Technol. 97 (2006) 2321-2329;
      (d) Z. Feng, S. Zhu, D.R. Martins de Godoi, A.C.S. Samia, D. Scherson, Anal. Chem. 84 (2012) 3764-3770.

    7. [7]

      (a) E. Samper, M. Rodríguez, M.A. De la Rubia, D. Prats, Sep. Purif. Technol. 65 (2009) 337-342;
      (b)J.H. Huang, G.M. Zeng, C.F. Zhou, et al., J.Hazard.Mater.183 (2010) 287-293;
      (c) D.J. Ennigrou, L. Gzara, M.R. Ben Romdhane, M. Dhahbi, Desalination 246 (2009) 363-369.

    8. [8]

      (a) L.E. Kanagy, B.M. Johnson, J.W. Castle, J.H. Rodgers Jr., Bioresour. Technol. 99 (2008) 1877-1885;
      (b) H.A. Qdais, H. Moussa, Desalination 164 (2004) 105-110.

    9. [9]

      (a) A. Üçer, A. Uyanik, Ş.F. Aygün, Sep. Purif. Technol. 47 (2006) 113-118;
      (b) B.E.Reed, S.Arunachalam, B.Thomas, Environ.Prog.Sustain. 13 (1994)60-64;
      (c) B. Xiao, K.M. Thomas, Langmuir 21 (2005) 3892-3902.

    10. [10]

      (a) J.L. Weidman, R.A. Mulvenna, B.W. Boudouris, W.A. Phillip, ACS Appl. Mater. Interfaces 9 (2017) 19152-19160;
      (b) M.X. Tan, Y.N. Sum, J.Y. Ying, Y. Zhang, EnergyEnviron. Sci. 6 (2013) 3254-3259;
      (c) H. Zhu, X. Tan, L. Tan, et al., ACS Sustain. Chem. Eng. 6 (2018) 5206-5213.

    11. [11]

      (a) Y. Wang, G. Ye, H. Chen, et al., J. Mater. Chem. A 3 (2015) 15292-15298;
      (b) J. Zhang, Z. Xiong, C. Li, C. Wu, J. Mol. Liq. 221 (2016) 43-50;
      (c) C. Liu, P. Wang, X. Liu, et al., Chem. -Asian J. 14 (2019) 261-268;
      (d) J. Li, X. Wang, G. Zhao, et al., Chem. Soc. Rev. 47 (2018) 2322-2356.

    12. [12]

      (a) A.P. Côté, A.I. Benin, N.W. Ockwig, M. O'Keeffe, A.J. Matzger, O.M. Yaghi, Science 310 (2005) 1166-1170;
      (b) S.Y. Ding, W. Wang, Chem. Soc. Rev. 42 (2013) 548-568;
      (c) P.J. Waller, F. Gándara, O.M. Yaghi, Acc. Chem. Res. 48 (2015) 3053-3063;
      (d) S.Kandambeth, K. Dey, R. Banerjee, J.Am. Chem. Soc.141 (2019) 1807-1822.

    13. [13]

      (a) M.S. Lohse, T. Bein, Adv. Funct. Mater. 28 (2018) 1705553;
      (b) Y. Song, Q. Sun, B. Aguila, S. Ma, Adv. Sci. 6 (2019) 1801410;
      (c) N. Huang, P. Wang, D. Jiang, Nat. Rev. Mater. 1 (2016) 16068;
      (d) M.X. Wu, Y.W. Yang, Chin. Chem. Lett. 28 (2017) 1135-1143.

    14. [14]

      (a) S.Y. Ding, M. Dong, Y.W. Wang, et al., J. Am. Chem. Soc. 138 (2016) 3031-3037;
      (b) N. Huang, L. Zhai, H. Xu, D. Jiang, J. Am. Chem. Soc. 139 (2017) 2428-2434;
      (c) Q. Sun, B. Aguila, J. Perman, et al., J. Am. Chem. Soc.139 (2017) 2786-2793;
      (d) K. Leus, K. Folens, N.R. Nicomel, et al., J. Hazard. Mater. 353 (2018) 312-319;
      (e) Q. Lu, Y. Ma, H. Li, et al., Angew. Chem. Int. Ed. 57 (2018) 6042-6048;
      (f) Z.A. Ghazi, A.M. Khattak, R. Iqbal, et al., New J. Chem. 42 (2018) 10234-10242;
      (g) F.Z. Cui, R.R. Liang, Q.Y. Qi, G.F. Jiang, X. Zhao, Adv. Sustain. Syst. (2019) 1800150.

    15. [15]

      (a) X.Y. Yang, L.H. Chen, Y. Li, et al., Chem. Soc. Rev. 46 (2017) 481-558;
      (b) S. Lopez-Orozco, A. Inayat, A. Schwab, T. Selvam, W. Schwieger, Adv. Mater. 23 (2011) 2602-2615;
      (c) Y. Li, Z.Y. Fu, B.L. Su, Adv. Funct. Mater. 22 (2012) 4634-4667.

    16. [16]

      R.R. Liang, X. Zhao, Org. Chem. Front. 5 (2018) 3341-3356.  doi: 10.1039/C8QO00830B

    17. [17]

      (a) D.B. Shinde, S. Kandambeth, P. Pachfule, R.R. Kumar, R. Banerjee, Chem. Commun. 51 (2015) 310-313;
      (b) A. Halder, S. Kandambeth, B.P. Biswal, et al., Angew. Chem. Int. Ed. 55 (2016) 7806-7810.

    18. [18]

      Dassault Systèmes BIOVIA, Materials Studio 8.0, Dassault Systèmes San Diego, (2014).

    19. [19]

      (a) T.Y. Zhou, S.Q. Xu, Q. Wen, Z.F. Pang, X. Zhao, J. Am. Chem. Soc. 136 (2014) 15885-15888;
      (b) Z.F. Pang, T.Y. Zhou, R.R. Liang, Q.Y. Qi, X. Zhao, Chem. Sci. 8 (2017) 3866-3870.

    20. [20]

      X. Chen, M. Addicoat, E. Jin, et al., J. Am. Chem. Soc. 137 (2015) 3241-3247.  doi: 10.1021/ja509602c

  • 加载中
    1. [1]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    2. [2]

      Mei ZhaoFengyang ZhaoJiantao PingWenli WuLingxi ZhaoXinyue LuanLi YuShuhua LiuYongxian GuoJuyoung YoonQiongzheng Hu . A recyclable covalent organic framework for selective removal of Hg(Ⅱ) and sunlight-driven sterilization in water. Chinese Chemical Letters, 2025, 36(10): 110782-. doi: 10.1016/j.cclet.2024.110782

    3. [3]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    4. [4]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    5. [5]

      Shiyan AiYaning XuHui ZhouZiwei CuiTiantian WuDan Tian . Superelastic and ultralight covalent organic framework composite aerogels modified with different functional groups for ultrafast adsorbing organic pollutants in water. Chinese Chemical Letters, 2025, 36(10): 110761-. doi: 10.1016/j.cclet.2024.110761

    6. [6]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    7. [7]

      Yujie WangHaoran WangYanni LiuManhua PengHongwei FanHong Meng . A comprehensive review on the scalable and sustainable synthesis of covalent organic frameworks. Chinese Chemical Letters, 2025, 36(8): 110189-. doi: 10.1016/j.cclet.2024.110189

    8. [8]

      Liying OuZhenluan XueBo LiZhiwei JinJiaochan ZhongLixia YangPenghui ShaoShenglian Luo . Nitrogen-containing linkage-bonds in covalent organic frameworks: Synthesis and applications. Chinese Chemical Letters, 2025, 36(6): 110294-. doi: 10.1016/j.cclet.2024.110294

    9. [9]

      Huining ZhangBaixiang WangJianping HanShaofeng WangXingmao LiuWenhui NiuZhongyu ShiZhiqiang WeiZhiguo WuYing ZhuQi Guo . Nature’s revelation: Preparation of Graphene-based Biomimetic materials and its application prospects for water purification. Chinese Chemical Letters, 2025, 36(6): 110319-. doi: 10.1016/j.cclet.2024.110319

    10. [10]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    11. [11]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    12. [12]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    13. [13]

      Xin ZhouXuejia LiYujia XiangHeng ZhangChuanshu HeZhaokun XiongWei LiPeng ZhouHongyu ZhouYang LiuBo Lai . The application of low-valent sulfur oxy-acid salts in advanced oxidation and reduction processes: A review. Chinese Chemical Letters, 2025, 36(9): 110664-. doi: 10.1016/j.cclet.2024.110664

    14. [14]

      Ming YueYi-Rong WangJia-Yong WengJia-Li ZhangDa-Yu ChiMingjin ShiXiao-Gang HuYifa ChenShun-Li LiYa-Qian Lan . Multi-metal porous crystalline materials for electrocatalysis applications. Chinese Chemical Letters, 2025, 36(6): 110049-. doi: 10.1016/j.cclet.2024.110049

    15. [15]

      Shouchao ZhongYue WangMingshu XieYiqian WuJiuqiang LiJing PengLiyong YuanMaolin ZhaiWeiqun Shi . Radiation reduction modification of sp2 carbon-conjugated covalent organic frameworks for enhanced photocatalytic chromium(VI) removal. Chinese Chemical Letters, 2025, 36(5): 110312-. doi: 10.1016/j.cclet.2024.110312

    16. [16]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    17. [17]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    18. [18]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    19. [19]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    20. [20]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

Metrics
  • PDF Downloads(9)
  • Abstract views(2320)
  • HTML views(325)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return