Citation: Han Xiang-Lei, Lin Peng-Peng, Li Qingjiang. Recent advances of allenes in the first-row transition metals catalyzed C—H activation reactions[J]. Chinese Chemical Letters, ;2019, 30(8): 1495-1502. doi: 10.1016/j.cclet.2019.04.027 shu

Recent advances of allenes in the first-row transition metals catalyzed C—H activation reactions


  • Author Bio:

    Qingjiang Li was born in Anhui, China in 1985. He received his Bachelor degree in 2007 from Lanzhou University. Then he moved to Peking University and obtained his Ph.D. under the guidance of Prof. Yanxing Jia. After two years as a research assistant in Prof. Henry N.C. Wong's lab at the Chinese University of Hong Kong, he was appointed as an associate professor at Sun Yat-sen University in 2014. His current research interests are the metal-catalyzed C–H functionalization reactions, the development of novel reactions for organic synthesis, and total synthesis of natural products
  • * Corresponding author at: School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
    E-mail address: liqingj3@mail.sysu.edu.cn (Q. Li)
  • Received Date: 30 January 2019
    Revised Date: 26 March 2019
    Accepted Date: 9 April 2019
    Available Online: 16 August 2019

Figures(20)

  • Transition-metal-catalyzed C–H activation reaction has proven to be a powerful and efficient tool for the formation of diverse C–C and C–X bond and construction of functional complex molecules. From the viewpoint of sustainable chemistry, the first-row transition metals, such as Mn, Fe, Co, Ni and Cu, have been recognized as cheap, environmentally friendly and reactively effective catalysts for a number of C–H functionalization reactions. However, compared with the commonly used alkenes and alkynes in the first-row transition-metal-catalyzed C–H activations, considerable achievements have just been made by the use of structurally unique and reactively rich allenes as coupling partners in recent years. This review summarizes the recent progress of the first-row transition-metal-catalyzed C–H activations with allenes.
  • 加载中
    1. [1]

      (a) P. Gandeepan, T. Müller, D. Zell, et al., Chem. Rev. 119 (2019) 2192-2452;
      (b) Y. Hu, B. Zhou, C. Wang, Acc. Chem. Res. 51 (2018) 816-827;
      (c) S. Prakash, R. Kuppusamy, C.H. Cheng, ChemCatChem 10 (2018) 683-705;
      (d) Y. Xu, G. Dong, Chem. Sci. 9 (2018) 1424-1432;
      (e) J. He, M. Wasa, K.S.L. Chan, Q. Shao, J.Q. Yu, Chem. Rev. 117 (2017) 8754-8786;
      (f) J.R. Hummel, J.A. Boerth, J.A. Ellman, Chem. Rev. 117 (2017) 9163-9227;
      (g) Y. Park, Y. Kim, S. Chang, Chem. Rev. 117 (2017) 9247-9301;
      (h) J. Jiao, K. Murakami, K. Itami, ACS Catal. 6 (2016) 610-633;
      (i) W. Liu, L. Ackermann, ACS Catal. 6 (2016) 3743-3752;
      (j) T. Gensch, M.N. Hopkinson, F. Glorius, J. Wencel-Delord, Chem. Soc. Rev. 45 (2016) 2900-2936;
      (k) F. Wang, S. Yu, X. Li, Chem. Soc. Rev. 45 (2016) 6462-6477;
      (l) M. Gulías, J.L. Mascareñas, Angew. Chem. Int. Ed. 55 (2016) 11000-11019;
      (m) B. Ye, N. Cramer, Acc. Chem. Res. 48 (2015) 1308-1318;
      (n) O. Daugulis, J. Roane, L.D. Tran, Acc. Chem. Res. 48 (2015) 1053-1064;
      (o) B. Liu, F. Hu, B.F. Shi, ACS Catal. 48 (2015) 1863-1881;
      (p) S.A. Girard, T. Knauber, C.J. Li, Angew. Chem. Int. Ed. 53 (2014) 74-100;
      (q) G. Rouquet, N. Chatani, Angew. Chem. Int. Ed. 52 (2013) 11726-11743;
      (r) X. Shang, Z.Q. Liu, Chem. Soc. Rev. 42 (2013) 3253-3260;
      (s) B.J. Li, Z.J. Shi, Chem. Soc. Rev. 41 (2012) 5588-5598;
      (t) L. McMurray, F. O'Hara, M.J. Gaunt, Chem. Soc. Rev. 40 (2011) 1885-1898;
      (u) C.S. Yeung, V.M. Dong, Chem. Rev. 111 (2011) 1215-1292;
      (v) T. Newhouse, P.S. Baran, Angew. Chem. Int. Ed. 50 (2011) 3362-3374;
      (w) T.W. Lyons, M.S. Sanford, Chem. Rev. 110 (2010) 1147-1169.

    2. [2]

      B.M. Trost, Science 254 (1991) 1471-1477.  doi: 10.1126/science.1962206

    3. [3]

      P.A. Wender, B.L. Miller, Nature 460 (2009) 197-201.  doi: 10.1038/460197a

    4. [4]

      (a) A. Hoffmann-Röder, N. Krause, Angew. Chem. Int. Ed. 43 (2004) 1196-1216;
      (b) P. Rivera-Fuentes, F. Diederich, Angew. Chem. Int. Ed. 51 (2012) 2818-2828;
      (c) S. Yu, S. Ma, Angew. Chem. Int. Ed. 51 (2012) 3074-3112.

    5. [5]

      (a) B. Yang, Y. Qiu, J.E. Bäckvall, Acc. Chem. Res. 51 (2018) 1520-1531;
      (b) J. Ye, S. Ma, Acc. Chem. Res. 47 (2014) 989-1000;
      (c) C. Aubert, L. Fensterbank, P. Garcia, M. Malacria, A. Simonneau, Chem. Rev. 111 (2011) 1954-1993;
      (d) S. Ma, Chem. Rev. 105 (2005) 2829-2872;
      (e) A.S.K. Hashmi, Angew. Chem. Int. Ed. 39 (2000) 3590-3593;
      (f) N. Krause, A.S. Hashmi, Modern Allene Chemistry, Wiley-VCH, Weinheim, 2004.

    6. [6]

      Y.J. Zhang, E. Skucas, M.J. Krische, Org. Lett. 11 (2009) 4248-4250.  doi: 10.1021/ol901759t

    7. [7]

      (a) Z. Fang, C. Fu, S. Ma, Chem. -Eur. J. 16 (2010) 3910-3913;
      (b) R. Zeng, C. Fu, S. Ma, J. Am. Chem. Soc. 134 (2012) 9597-9600;
      (c) R. Zeng, S. Wu, C. Fu, S. Ma, J. Am. Chem. Soc. 135 (2013) 18284-18287.

    8. [8]

      S. Nakanowatari, L. Ackermann, Chem. -Eur. J. 21 (2015) 16246-16251.  doi: 10.1002/chem.201502785

    9. [9]

      P. Gandeepan, P. Rajamalli, C.H. Cheng, Chem. -Eur. J. 21 (2015) 9198-9203.  doi: 10.1002/chem.201501106

    10. [10]

      (a) H. Wang, F. Glorius, Angew. Chem. Int. Ed. 51 (2012) 7318-7322;
      (b) H. Wang, B. Beiring, D.G. Yu, K.D. Collins, F. Glorius, Angew. Chem. Int. Ed. 52 (2013) 12430-12434.

    11. [11]

      (a) D.N. Tran, N. Cramer, Angew. Chem. Int. Ed. 49 (2010) 8181-8184;
      (b) D.N. Tran, N. Cramer, Angew. Chem. Int. Ed. 52 (2013) 10630-10634;
      (c) B. Ye, N. Cramer, J. Am. Chem. Soc. 135 (2013) 636-639.

    12. [12]

      (a) T. Lan, L. Wang, Y. Rao, Org. Lett. 19 (2017) 972-975;
      (b) T. Li, C. Zhang, Y. Tan, W. Pan, Y. Rao, Org. Chem. Front. 4 (2017) 204-209;
      (c) X. Yao, L. Jin, Y. Rao, Asian J. Org. Chem. 6 (2017) 825-830.

    13. [13]

      (a) Y. Kuninobu, P. Yu, K. Takai, Org. Lett. 12 (2010) 4274-4276;
      (b) X.F. Xia, Y.Q. Wang, L.L. Zhang, et al., Chem.-Eur. J. 20 (2014) 5087-5091;
      (c) T.J. Gong, W. Su, Z.J. Liu, et al., Org. Lett. 16 (2014) 330-333.

    14. [14]

      R. Kuppusamy, K. Muralirajan, C.H. Cheng, ACS Catal. 6 (2016) 3909-3913.  doi: 10.1021/acscatal.6b00978

    15. [15]

      R. Santhoshkumar, C.H. Cheng, Asian J. Org. Chem. 7 (2018) 1151-1163.  doi: 10.1002/ajoc.201800133

    16. [16]

      C. Wang, Synlett 24 (2013) 1606-1613.  doi: 10.1055/s-0033-1339299

    17. [17]

      S.Y. Chen, Q. Li, X.G. Liu, et al., ChemSusChem 10 (2017) 2360-2364.  doi: 10.1002/cssc.201700452

    18. [18]

      S.Y. Chen, Q. Li, H. Wang, J. Org. Chem. 82 (2017) 11173-11181.  doi: 10.1021/acs.joc.7b02220

    19. [19]

      C. Wang, A. Wang, M. Rueping, Angew. Chem. Int. Ed. 56 (2017) 9935-9938.  doi: 10.1002/anie.201704682

    20. [20]

      S.Y. Chen, X.L. Han, J.Q. Wu, et al., Angew. Chem. Int. Ed. 56 (2017) 9939-9943.  doi: 10.1002/anie.201704952

    21. [21]

      (a) Y. Kuninobu, Y. Nishina, T. Takeuchi, K. Takai, Angew. Chem. Int. Ed. 46 (2007) 6518-6520;
      (b) B. Zhou, Y. Hu, C. Wang, Angew. Chem. Int. Ed. 54 (2015) 13659-13663;
      (c) W. Liu, J. Bang, Y. Zhang, L. Ackermann, Angew. Chem. Int. Ed. 54 (2015) 14137-14140;
      (d) Y.F. Liang, L. Massignan, W. Liu, L. Ackermann, Chem. -Eur. J. 22 (2016) 14856-14859;
      (e) S. Sueki, Z. Wang, Y. Kuninobu, Org. Lett. 18 (2016) 304-307;
      (f) B. Zhou, Y. Hu, T. Liu, C. Wang, Nat. Commun. 8 (2017) 1169-1177.

    22. [22]

      C. Lei, L. Peng, K. Ding, Adv. Synth. Catal. 360 (2018) 2952-2958.  doi: 10.1002/adsc.201800465

    23. [23]

      C. Zhu, J.L. Schwarz, S. Cembellín, S. Greβies, F. Glorius, Angew. Chem. Int. Ed. 57 (2018) 437-441.  doi: 10.1002/anie.201710835

    24. [24]

      (a) P. Wang, L. Deng, Chin. J. Chem. 36 (2018) 1222-1240;
      (b) R. Shang, L. Ilies, E. Nakamura, Chem. Rev. 117 (2017) 9086-9139;
      (c) F. Jia, Z. Li, Org. Chem. Front. 1 (2014) 194-214.

    25. [25]

      J. Mo, T. Müller, J.C.A. Oliveira, L. Ackermann, Angew. Chem. Int. Ed. 57 (2018) 7719-7723.  doi: 10.1002/anie.201801324

    26. [26]

      (a) T. Yoshino, S. Matsunaga, Adv. Synth. Catal. 359 (2017) 1245-1262;
      (b) S. Wang, S.Y. Chen, Chem. Commun. 53 (2017) 3165-3180.

    27. [27]

      S. Nakanowatari, R. Mei, M. Feldt, L. Ackermann, ACS Catal. 7 (2017) 2511-2515.  doi: 10.1021/acscatal.7b00207

    28. [28]

      J.P. Wan, L. Gan, Y. Liu, Org. Biomol. Chem. 15 (2017) 9031-9043.  doi: 10.1039/C7OB02011B

    29. [29]

      J.A. Boerth, J.A. Ellman, Angew. Chem. Int. Ed. 56 (2017) 9976-9980.  doi: 10.1002/anie.201705817

    30. [30]

      N. Thrimurtulu, A. Dey, D. Maiti, C.M.R. Volla, Angew. Chem. Int. Ed. 55 (2016) 12361-12365.  doi: 10.1002/anie.201604956

    31. [31]

      R. Boobalan, R. Kuppusamy, R. Santhoshkumar, P. Gandeepan, C.H. Cheng, ChemCatChem 9 (2017) 273-277.  doi: 10.1002/cctc.201601190

    32. [32]

      N. Thrimurtulu, R. Nallagonda, C.M.R. Volla, Chem. Commun. 53 (2017) 1872-1875.  doi: 10.1039/C6CC08622E

    33. [33]

      R. Kuppusamy, R. Santhoshkumar, R. Boobalan, H.R. Wu, C.C. Cheng, ACS Catal. 8 (2018) 1880-1883.  doi: 10.1021/acscatal.7b04087

    34. [34]

      R. Boobalan, R. Santhoshkumar, C.H. Cheng, Adv. Synth. Catal. 361 (2019) 1140-1145.  doi: 10.1002/adsc.201801335

    35. [35]

      S. Zhai, S. Qiu, X. Chen, et al., ACS Catal. 8 (2018) 6645-6649.  doi: 10.1021/acscatal.8b01720

    36. [36]

      T.H. Meyer, J.C.A. Oliveira, S.C.S. Sau, N.W.J. Ang, L. Ackermann, ACS Catal. 8 (2018) 9140-9147.  doi: 10.1021/acscatal.8b03066

    37. [37]

      S. Nakanowatari, T. Müller, J.C.A. Oliveira, L. Ackermann, Angew. Chem. Int. Ed. 56 (2017) 15891-15895.  doi: 10.1002/anie.201709087

  • 加载中
    1. [1]

      Xiao TangErik V. Van der EyckenLiangliang Song . Transition metal-catalyzed C-H activation/annulation for the construction of unnatural amino acids and peptides. Chinese Chemical Letters, 2026, 37(2): 111678-. doi: 10.1016/j.cclet.2025.111678

    2. [2]

      Ke WuXiuqin RuanShuolei JiaEnyuan WangQingfa Zhou . DABCO-catalyzed [3+4] annulations of Schiff bases with α-substituted allenes: Construction of functionalized benzazepine derivatives. Chinese Chemical Letters, 2025, 36(7): 110646-. doi: 10.1016/j.cclet.2024.110646

    3. [3]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    4. [4]

      Chen-Chang CuiShao-Qing ShiLu-Yao WangFeng LinMan-Su TuWen-Juan HaoBo Jiang . Accessing polyarene-fused ten-membered lactams via oxidative N-heterocyclic carbene (NHC)-catalyzed high-order [7 + 3] annulation. Chinese Chemical Letters, 2025, 36(6): 110541-. doi: 10.1016/j.cclet.2024.110541

    5. [5]

      Liu-Liang MaoYunyun LiuJie-Ping Wan . An update on the advances in chromone and the derivatives synthesis based on the key chromone annulation of o-hydroxyaryl enaminones. Chinese Chemical Letters, 2025, 36(7): 110784-. doi: 10.1016/j.cclet.2024.110784

    6. [6]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    7. [7]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    8. [8]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    9. [9]

      Kai ZhouAo SunYuchao WangHang DongChenkai BaiYidian MoXuyang DingXiangbao MengZhongtang LiZhongjun Li . Semisynthesis of rare chondroitin sulfate B and T oligosaccharides. Chinese Chemical Letters, 2025, 36(9): 110783-. doi: 10.1016/j.cclet.2024.110783

    10. [10]

      Zhihua WangXiang-Zhao ZhuXinglei HeChen-Xu GongWang-Fu LiangWenfeng WangYuqi LinKe-Yin Ye . Deoxygenative hydrohalogenation of propargyl alcohols: Regio- and stereoselective synthesis of unsaturated distal dihalides. Chinese Chemical Letters, 2025, 36(12): 111067-. doi: 10.1016/j.cclet.2025.111067

    11. [11]

      Zhaoquan GuoWenyao DingZhenguo XiLin YangGang LuHongyin Gao . Protecting-group-dependent chemo- and regioselective cascade rearrangement of N-arylhydroxylamines with N-thiophthalimides. Chinese Chemical Letters, 2026, 37(2): 111196-. doi: 10.1016/j.cclet.2025.111196

    12. [12]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    13. [13]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    14. [14]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    15. [15]

      Weimei ZengYouai Qiu . Electrochemical C-H carboxylation of benzylamines. Chinese Chemical Letters, 2026, 37(1): 111679-. doi: 10.1016/j.cclet.2025.111679

    16. [16]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    17. [17]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    18. [18]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    19. [19]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    20. [20]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

Metrics
  • PDF Downloads(11)
  • Abstract views(1454)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return