Citation: Zhao Ran, Feng Guidong, Xin Xiaodong, Guan Honghao, Hua Jing, Wan Renzhong, Li Wei, Liu Lei. Oxidative C-H alkynylation of 3, 6-dihydro-2H-pyrans[J]. Chinese Chemical Letters, ;2019, 30(7): 1432-1434. doi: 10.1016/j.cclet.2019.03.027 shu

Oxidative C-H alkynylation of 3, 6-dihydro-2H-pyrans

    * Corresponding authors.
    E-mail addresses: wrzh63@163.com (R. Wan), liwei6911@163.com (W. Li), leiliu@sdu.edu.cn (L. Liu)
  • Received Date: 23 February 2019
    Revised Date: 12 March 2019
    Accepted Date: 18 March 2019
    Available Online: 19 July 2019

Figures(6)

  • Current synthesis of α-substituted 3, 6-dihydro-2H-pyrans dominantly relies on functional group transformation. Herein, a direct and practical oxidative C-H alkynylation and alkenylation of 3, 6-dihydro-2H-pyran skeletons with a range of potassium trifluoroborates is developed. The metal-free process is well tolerated with a wide variety of 3, 6-dihydro-2H-pyrans, rapidly providing a library of 2, 4-disubstituted 3, 6-dihydro-2H-pyrans with diverse patterns of α-functionalities for further diversification and bioactive small molecule identification.
  • 加载中
    1. [1]

      (a) M.M. Faul, B.E. Huff, Chem. Rev. 100 (2000) 2407-2474;
      (b) E.J. Kang, E. Lee, Chem. Rev. 105 (2005) 4348-4378;
      (c) T. Nakata, Chem. Rev. 105 (2005) 4314-4347;
      (d) S.D. Roughley, A.M. Jordan, J. Med. Chem. 54 (2011) 3451-3479;
      (e) L.G. León, P.O. Miranda, V.S. Martín, J.I. Padrón, J.M. Padrón, Bioorg. Med. Chem. Lett. 17 (2007) 3087-3090;
      (f) T.A. Johnson, K. Tenney, R.H. Cichewicz, et al., J. Med. Chem. 50 (2007) 3795-3803;
      (g) J. De Pascual Teresa, S. Vincente, M.S. Gonzalez, I.S. Bellido, Phytochemistry 22 (1983) 2235-2238.

    2. [2]

      (a) P.O. Miranda, D.D. Díaz, J.I. Padrón, J. Bermejo, V.S. Martín, Org. Lett. 5 (2003) 1979-1982;
      (b) P.O. Miranda, R.M. Carballo, V.S. Martín, J.I. Padrón, Org. Lett. 11 (2009) 357-360;
      (c) Y. Lian, R.J. Hinkle, J. Org. Chem. 71 (2006) 7071-7074.

    3. [3]

      (a) T.L. Gresham, T.R. Steadman, J. Am. Chem. Soc. 71 (1 949) 737-738;
      (b) K. Fujiwara, T. Kurahashi, S. Matsubara, J. Am. Chem. Soc. 134 (2012) 5512-5515;
      (c) L. Liu, H. Kim, Y. Xie, et al., J. Am. Chem. Soc. 139 (2017) 13656-13659.

    4. [4]

      (a) B.M. Trost, B.S. Brown, E.J. McEachern, O. Kuhn, Chem.-Eur. J. 9 (2003) 4442-4451;
      (b) S. Basu, H. Waldmann, J. Org. Chem. 71 (2006) 3977-3979.

    5. [5]

      (a) W. Kong, J. Cui, Y. Yu, et al., Org. Lett. 11 (2009) 1213-1216;
      (b) K.P. Kalbarczyk, S.T. Diver, J. Org. Chem. 74 (2009) 2193-2196;
      (c) K. Watanabe, J. Li, N. Veerasamy, A. Ghosh, R.G. Carter, Org. Lett. 18 (2016) 1744-1747;
      (d) B. Guo, G. Schwarzwalder, J.T. Njardarson, Angew. Chem. Int. Ed. 51 (2012) 5675-5678.

    6. [6]

      (a) I.P. Beletskaya, A.V. Cheprakov, Chem. Rev. 100 (2000) 3009-3066;
      (b) G. Peh, P.E. Floreancig, Org. Lett. 17 (2015) 3750-3753.

    7. [7]

      A.M. Gómez, F. Lobo, C. Uriel, J. Cristóbal López, Eur. J. Org. Chem. 2013(2013) 7221-7262.
       

    8. [8]

      (a) K. Godula, D. Sames, Science 312 (2006) 67-72;
      (b) W.R. Gutekunst, P.S. Baran, Chem. Soc. Rev. 40 (2011) 1976-1991;
      (c) R. Giri, B.F. Shi, K.M. Engle, N. Maugel, J.Q. Yu, Chem. Soc. Rev. 38 (2009) 3242-3272;
      (d) J. Robertson, J. Pillai, R.K. Lush, Chem. Soc. Rev. 30 (2001) 94-103;
      (e) H.M.L. Davies, Angew. Chem. Int. Ed. 45 (2006) 6422-6425;
      (f) S.Y. Zhang, F.M. Zhang, Y.Q. Tu, Chem. Soc. Rev. 40 (2011) 1937-1 949.

    9. [9]

      (a) C.J. Li, Z. Li, Pure Appl. Chem. 78 (2006) 935-945;
      (b) S. Murahashi, D. Zhang, Chem. Soc. Rev. 37 (2008) 1490-1501;
      (c) C.J. Li, Acc. Chem. Res. 42 (2009) 335-344;
      (d) C.J. Scheuermann, Chem.-Asian J. 5 (2010) 436-451;
      (e) M. Klussmann, D. Sureshkumar, Synthesis (2011) 353-369;
      (f) C. Liu, H. Zhang, W. Shi, A. Lei, Chem. Rev. 111 (2011) 1780-1824;
      (g) C.L. Sun, B.J. Li, Z.J. Shi, Chem. Rev. 111 (2011) 1293-1314;
      (h) C. Zhang, C. Tang, N. Jiao, Chem. Soc. Rev. 41 (2012) 3464-3484;
      (i) S.H. Cho, J.Y. Kim, J. Kwak, S. Chang, Chem. Soc. Rev. 40 (2011) 5068-5083;
      (j) J. Le Bras, J. Muzart, Chem. Rev. 111 (2011) 1170-1214;
      (k) C.S. Yeung, V.M. Dong, Chem. Rev. 111 (2011) 1215-1292;
      (l) R. Rohlmann, O. García Mancheño, Synlett 24 (2013) 6-10;
      (m) S.A. Girard, T. Knauber, C.J. Li, Angew. Chem. Int. Ed. 53 (2014) 74-100.

    10. [10]

      (a) Y. Zhang, C.J. Li, Angew. Chem. Int. Ed. 45 (2006) 1949-1952;
      (b) Y. Zhang, C.J. Li, J. Am. Chem. Soc. 128 (2006) 4242-4243;
      (c) M. Ghobrial, K. Harhammer, M.D. Mihovilovic, M. Schnürch, Chem. Commun. 46 (2010) 8836-8838;
      (d) H. Richter, R. Rohlmann, O. García Mancheño, Chem.-Eur. J. 17 (2011) 11622-11627;
      (e) S.J. Park, J.R. Price, M.H. Todd, J. Org. Chem. 77 (2012) 949-955;
      (f) D.J. Clausen, P.E. Floreancig, J. Org. Chem. 77 (2012) 6574-6582;
      (g) X. Liu, B. Sun, Z. Xie, X. Qin, L. Liu, H. Lou, J. Org. Chem. 78 (2013) 31 04-3112;
      (h) W. Chen, Z. Xie, H. Zheng, H. Lou, L. Liu, Org. Lett. 16 (2014) 5988-5991;
      (i) Z. Meng, S. Sun, H. Yuan, H. Lou, L. Liu, Angew. Chem. Int. Ed. 53 (2014) 543-547;
      (j) W. Muramatsu, K. Nakano, Org. Lett. 16 (2014) 2 042-2 045;
      (k) M. Xiang, Q.Y. Meng, X.W. Gao, et al., Org. Chem. Front. 3 (2016) 486-490;
      (l) Z. Peng, Y. Wang, Z. Yu, et al., J. Org. Chem. 83 (2018) 7900-7906;
      (m) L. Jin, J. Feng, G. Lu, C. Cai, Adv. Synth. Catal. 357 (2015) 2105-2110.

    11. [11]

      P. Magnus, J. Lacour, P.A. Evans, P. Rigollier, H. Tobler, J. Am. Chem. Soc. 120(1998) 12486-12499.  doi: 10.1021/ja9829564

    12. [12]

      R. Zhou, H. Liu, H. Tao, X. Yu, J. Wu, Chem. Sci. 8(2017) 4654-4659.  doi: 10.1039/C7SC00953D

    13. [13]

      M. Wan, Z. Meng, H. Lou, L. Liu, Angew. Chem. Int. Ed. 53(2014) 13845-13849.  doi: 10.1002/anie.201407083

    14. [14]

      F. Diederich, P.J. Stang, R.R. Tykwinski, Acetylene Chemistry:Chemistry, Biology and Material Science, Wiley-VCH, Weinheim, 2005.

    15. [15]

      H.H. Jung, P.E. Floreancig, Tetrahedron 65(2009) 10830-10836.  doi: 10.1016/j.tet.2009.10.088

  • 加载中
    1. [1]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    2. [2]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    3. [3]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    4. [4]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    5. [5]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    6. [6]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    7. [7]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    8. [8]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    9. [9]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    10. [10]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    11. [11]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    12. [12]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    13. [13]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    14. [14]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    15. [15]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    16. [16]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    17. [17]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    18. [18]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    19. [19]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    20. [20]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

Metrics
  • PDF Downloads(8)
  • Abstract views(902)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return