Transition metal coordinated framework porphyrin for electrocatalytic oxygen reduction
-
*Corresponding author.
E-mail address: zhang-qiang@mails.tsinghua.edu.cn (Q. Zhang)
Citation: Zhao Chang-Xin, Li Bo-Quan, Liu Jia-Ning, Huang Jia-Qi, Zhang Qiang. Transition metal coordinated framework porphyrin for electrocatalytic oxygen reduction[J]. Chinese Chemical Letters, ;2019, 30(4): 911-914. doi: 10.1016/j.cclet.2019.03.026
X. Ge, A. Sumboja, D. Wuu, et al., ACS Catal. 5(2015) 4643-4667.
doi: 10.1021/acscatal.5b00524
A.A. Gewirth, J.A. Varnell, A.M. DiAscro, Chem. Rev. 118(2018) 2313-2339.
doi: 10.1021/acs.chemrev.7b00335
Y. Guo, P. Yuan, J. Zhang, et al., ACS Nano 12(2018) 1894-1901.
doi: 10.1021/acsnano.7b08721
J. Li, Z. Xi, Y.T. Pan, et al., J. Am. Chem. Soc. 140(2018) 2926-2932.
doi: 10.1021/jacs.7b12829
H. Yuan, L. Kong, T. Li, Q. Zhang, Chin. Chem. Lett. 28(2017) 2180-2194.
doi: 10.1016/j.cclet.2017.11.038
W.T. Hong, M. Risch, K.A. Stoerzinger, et al., Energy Environ. Sci. 8(2015) 1404-1427.
doi: 10.1039/C4EE03869J
Q. Wang, Y. Ji, Y. Lei, et al., ACS Energy Lett. 3(2018) 1183-1191.
doi: 10.1021/acsenergylett.8b00303
C.Y. Lin, D. Zhang, Z. Zhao, Z. Xia, Adv. Mater. 30(2018) 1703646.
doi: 10.1002/adma.201703646
M. Kiani, J. Zhang, Y. Luo, et al., J. Energy Chem. 27(2018) 1124-1139.
doi: 10.1016/j.jechem.2018.01.019
V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Nat. Mater. 16(2017) 57-69.
doi: 10.1038/nmat4738
C. Lv, C. Yan, G. Chen, et al., Angew. Chem. Int. Ed. 57(2018) 6073-6076.
doi: 10.1002/anie.201801538
Z.W. Seh, J. Kibsgaard, C.F. Dickens, et al., Science 355(2017) eaad4998.
doi: 10.1126/science.aad4998
M. Shao, Q. Chang, J.P. Dodelet, R. Chenitz, Chem. Rev. 116(2016) 3594-3657.
doi: 10.1021/acs.chemrev.5b00462
X.X. Wang, D.A. Cullen, Y.T. Pan, et al., Adv. Mater. 30(2018) 1706758.
doi: 10.1002/adma.201706758
X. Zhang, X. Cheng, Q. Zhang, J. Energy Chem. 25(2016) 967-984.
doi: 10.1016/j.jechem.2016.11.003
B.Y. Xia, Y. Yan, N. Li, et al., Nat. Energy 1(2016) 15006.
doi: 10.1038/nenergy.2015.6
H.B. Yang, J. Miao, S.F. Hung, et al., Sci. Adv. 2(2016) e1501122.
doi: 10.1126/sciadv.1501122
S. Dou, A. Shen, L. Tao, S. Wang, Chem. Commun. (Camb.) 50(2014) 10672-10675.
doi: 10.1039/C4CC05055J
L. Yang, X. Zeng, W. Wang, D. Cao, Adv. Funct. Mater. 28(2018) 1704537.
doi: 10.1002/adfm.v28.7
P. Yin, T. Yao, Y. Wu, et al., Angew. Chem. Int. Ed. 55(2016) 10800-10805.
doi: 10.1002/anie.201604802
J. Wu, S. Dou, A. Shen, et al., J. Mater. Chem. A Mater. Energy Sustain. 2(2014) 20990-20995.
doi: 10.1039/C4TA05159A
V.M. Bau, X. Bo, L. Guo, J. Energy Chem. 26(2017) 63-71.
doi: 10.1016/j.jechem.2016.07.005
L. Hou, J. Guo, Z. Xiang, J. Energy Chem. 28(2019) 73-78.
doi: 10.1016/j.jechem.2018.01.010
W. Xia, A. Mahmood, Z. Liang, R. Zou, S. Guo, Angew. Chem. Int. Ed. 55(2016) 2650-2676.
doi: 10.1002/anie.201504830
B. Wang, X. Cui, J. Huang, R. Cao, Q. Zhang, Chin. Chem. Lett. 29(2018) 1757-1767.
doi: 10.1016/j.cclet.2018.11.021
Y. Gorlin, B. Lassalle-Kaiser, J.D. Benck, et al., J. Am. Chem. Soc. 135(2013) 8525-8534.
doi: 10.1021/ja3104632
Z. Zhang, J. Liu, J. Gu, L. Su, L. Cheng, Energy Environ. Sci. 7(2014) 2535-2558.
doi: 10.1039/C3EE43886D
T. Wang, J. Wu, Y. Liu, et al., Energy Storage Mater. 16(2019) 24-30.
doi: 10.1016/j.ensm.2018.04.020
Z. Hu, C. Chen, H. Meng, et al., Electrochem. commun. 13(2011) 763-765.
doi: 10.1016/j.elecom.2011.03.004
S. Li, B. Li, L. Ma, J. Yang, H. Xu, Chin. Chem. Lett. 28(2017) 2159-2163.
doi: 10.1016/j.cclet.2017.08.029
B. Yan, N.M. Concannon, J.D. Milshtein, F.R. Brushett, Y. Surendranath, Angew. Chem. Int. Ed. 56(2017) 7496-7499.
doi: 10.1002/anie.201702578
J. Xiao, Y. Xia, C. Hu, J. Xi, S. Wang, J. Mater. Chem. A Mater. Energy Sustain. 5(2017) 11114-11123.
doi: 10.1039/C7TA02096A
J.L. Shi, C. Tang, J.Q. Huang, W. Zhu, Q. Zhang, J. Energy Chem. 27(2018) 167-175.
doi: 10.1016/j.jechem.2017.09.014
C. Tang, Q. Zhang, Adv. Mater. 29(2017) 1604103.
doi: 10.1002/adma.201604103
C. Tang, H.F. Wang, Q. Zhang, Accounts. Chem. Res. 51(2018) 881-889.
doi: 10.1021/acs.accounts.7b00616
M. Zhou, H.L. Wang, S. Guo, Chem. Soc. Rev. 45(2016) 1273-1307.
doi: 10.1039/C5CS00414D
Y. Liang, Y. Li, H. Wang, et al., Nat. Mater. 10(2011) 780-786.
doi: 10.1038/nmat3087
C. Tang, M.M. Titirici, Q. Zhang, J. Energy Chem. 26(2017) 1077-1093.
doi: 10.1016/j.jechem.2017.08.008
J. Xie, B.Q. Li, H.J. Peng, et al., Angew. Chem. Int. Ed. 58(2019) 4963-4967.
doi: 10.1002/anie.201814605
M.L. Rigsby, D.J. Wasylenko, M.L. Pegis, J.M. Mayer, J. Am. Chem. Soc. 137(2015) 4296-4299.
doi: 10.1021/jacs.5b00359
W. Zhang, W. Lai, R. Cao, Chem. Rev. 117(2017) 3717-3797.
doi: 10.1021/acs.chemrev.6b00299
A.N. Oldacre, A.E. Friedman, T.R. Cook, J. Am. Chem. Soc. 139(2017) 1424-1427.
doi: 10.1021/jacs.6b12404
G. Luo, Y. Wang, Y. Li, Sci. Bull. (Beijing) 62(2017) 1337-1343.
doi: 10.1016/j.scib.2017.08.015
S.C. Xu, B.C. Hu, W.Y. Zhou, C.G. Sun, Z.L. Liu, Chin. Chem. Lett. 23(2012) 157-160.
doi: 10.1016/j.cclet.2011.11.011
A.P. Cote, A.I. Benin, N.W. Ockwig, et al., Science 310(2005) 1166-1170.
doi: 10.1126/science.1120411
P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 47(2008) 3450-3453.
doi: 10.1002/anie.200705710
E.L. Spitler, W.R. Dichtel, Nat. Chem. 2(2010) 672-677.
doi: 10.1038/nchem.695
A. Bhunia, I. Boldog, A. Moeller, C. Janiak, J. Mater, Chem. A 1(2013) 14990-14999.
Y. Yuan, P. Cui, Y. Tian, et al., Chem. Sci. 7(2016) 3751-3756.
doi: 10.1039/C6SC00134C
B.Q. Li, S.Y. Zhang, B. Wang, et al., Energy Environ. Sci. 11(2018) 1723-1729.
doi: 10.1039/C8EE00977E
B.Q. Li, S.Y. Zhang, L. Kong, H.J. Peng, Q. Zhang, Adv. Mater. 30(2018) 1707483.
doi: 10.1002/adma.v30.23
B.Q. Li, X.R. Chen, X. Chen, et al., Research 2019(2019) 4608940.
L. Kong, B.Q. Li, H.J. Peng, et al., Adv. Energy Mater. 8(2018) 1800849.
doi: 10.1002/aenm.v8.20
J.J. Xu, C.H. Xiao, S.J. Ding, Chin. Chem. Lett. 28(2017) 748-754.
doi: 10.1016/j.cclet.2016.12.006
C. Tang, H.F. Wang, X. Chen, et al., Adv. Mater. 28(2016) 6845-6851.
doi: 10.1002/adma.201601406
C. Tang, H.S. Wang, H.F. Wang, et al., Adv. Mater. 27(2015) 4516-4522..
doi: 10.1002/adma.v27.30
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Wenbiao Zhang , Bolong Yang , Zhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630
Yaxin Sun , Huiyu Li , Shiquan Guo , Congju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Jiaqi Lin , Pupu Yang , Yimin Jiang , Shiqian Du , Dongcai Zhang , Gen Huang , Jinbo Wang , Jun Wang , Qie Liu , Miaoyu Li , Yujie Wu , Peng Long , Yangyang Zhou , Li Tao , Shuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Ting Xie , Xun He , Lang He , Kai Dong , Yongchao Yao , Zhengwei Cai , Xuwei Liu , Xiaoya Fan , Tengyue Li , Dongdong Zheng , Shengjun Sun , Luming Li , Wei Chu , Asmaa Farouk , Mohamed S. Hamdy , Chenggang Xu , Qingquan Kong , Xuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005