Citation: Shen Zhihao, Pi Chao, Cui Xiuling, Wu Yangjie. Rhodium(Ⅲ)-catalyzed intermolecular cyclization of anilines with sulfoxonium ylides toward indoles[J]. Chinese Chemical Letters, ;2019, 30(7): 1374-1378. doi: 10.1016/j.cclet.2019.01.033 shu

Rhodium(Ⅲ)-catalyzed intermolecular cyclization of anilines with sulfoxonium ylides toward indoles

    * Corresponding authors.
    E-mail addresses: cuixl@hqu.edu.cn (X. Cui), wyj@zzu.edu.cn (Y. Wu)
  • Received Date: 3 January 2019
    Revised Date: 21 January 2019
    Accepted Date: 23 January 2019
    Available Online: 3 July 2019

Figures(8)

  • Rhodium(Ⅲ)-catalyzed synthesis of indole derivatives has been realized via cascade reaction of C-H alkylation/nucleophilic cyclization starting from readily available N-phenylpyridin-2-amines and sulfoxonium ylides. Notably, this transformation could smoothly proceed with high yields, good regioselectivity, and feature broad group tolerance and under redox-neutral condition to avoid external oxidant. The titled products are potentially important building blocks in the organic synthesis through various chemical transformations.
  • 加载中
    1. [1]

      (a) L. Li, Z. Chen, X. Zhang, Y. Jia, Chem. Rev. 118 (2018) 3752-3832;
      (b) L. Meng, Q. Guo, M. Chen, et al., Chin. Chem. Lett. 29 (2018) 1257-1260;
      (c) M. Corsello, J. Kim, N. Garg, Chem. Sci. 8 (2017) 5836-5844;
      (d) E. Stempel, T. Gaich, Acc. Chem. Res. 49 (2016) 2390-2402;
      (e) R.D. Taylor, M. MacCoss, A.D.G. Lawson, J. Med. Chem. 57 (2014) 5845-5859;
      (f) D.A. Horton, G.T. Bourne, M.L. Smythe, Chem. Rev. 103 (2003) 893-930.

    2. [2]

      (a) J. Manfredi, U.S. Pat. Appl. Publ., 20130261118, 03 Oct. 2013;
      (b) I.I. Zaitseva, S.V. Zaitsev, P.O. Berggren, Invest. New. Drug. 34 (2016) 522-529;
      (d) L.S. Ross, M.J. Lafuente-Monasterio, T. Sakata-Kato, et al., ACS Infect. Dis. 4 (2018) 508-515;
      (f) D. Marie-Thérèse, B. Stéphane, D. Claire, et al., Eur. Pat. Appl. Publ. (2017) WO 2017064216, 20 Apr.

    3. [3]

      (a) Z. Wang, P. Xie, Y. Xia, Chin. Chem. Lett. 29 (2018) 47-53;
      (b) Z. Chen, X. Shi, D. Ge, et al., Chin. Chem. Lett. 28 (2017) 231-234;
      (c) B. Zhang, A. Studer, Chem. Soc. Rev. 44 (2015) 3505-3521;
      (d) G.R. Humphrey, J.T. Kuethe, Chem. Rev. 106 (2006) 2875-2911.

    4. [4]

      (a) E. Fischer, F. Jourdan, Ber. Dtsch. Chem. Ges. 16 (1883) 2241-2245;
      (b) E. Fischer, O. Hess, Ber. Dtsch. Chem. Ges. 17 (1884) 559-568.

    5. [5]

      (a) X. Hu, X. Chen, Y. Zhu, et al., Org. Lett. 19 (2017) 3474-3477;
      (b) P.V. Reddy, M. Annapurna, P. Srinivas, et al., New J. Chem. 39 (2015) 3399-3404;
      (c) J. Chen, L. He, K. Natte, et al., Adv. Synth. Catal. 356 (2014) 2955-2959;
      (d) W. Song, L. Ackermann, Chem. Commun. 49 (2013) 6638-6640;
      (e) L. Ackermann, A.V. Lygin, Org. Lett. 14 (2012) 764-767;
      (f) J. Chen, Q. Pang, Y. Sun, et al., J. Org. Chem. 76 (2011) 3523-3526;
      (g) J. Chen, G. Song, C.L. Pan, X. Li, Org. Lett. 12 (2010) 5426-5429;
      (h) F. Maassarani, M. Pfeffer, J. Spencer, E. Wehman, J. Organomet. Chem. 466 (1994) 265-271.

    6. [6]

      (a) K. Yu, Y. Liang, B. Li, et al., Adv. Synth. Catal. 358 (2016) 661-666;
      (b) H. Jiang, S. Gao, J. Xu, et al., Adv. Synth. Catal. 358 (2016) 188-194;
      (c) G.D. Tang, C.L. Pan, X. Li, Org. Chem. Front. 3 (2015) 87-90;
      (d) N. KumaráMishra, S. HoonáHan, I. SuáKim, Chem. Commun. 51 (2015) 17229-17232.

    7. [7]

      M.K. Manna, G. Bairy, R. Jana, J. Org. Chem. 83 (2018) 8390-8400.  doi: 10.1021/acs.joc.8b01034

    8. [8]

      L. Jie, L. Wang, D. Xiong, et al., J. Org. Chem. 83 (2018) 10974-10984.  doi: 10.1021/acs.joc.8b01618

    9. [9]

      (a) C. You, C. Pi, Y. Wu, X. Cui, Adv. Synth. Catal. 360 (2018) 4068-4072;
      (b) G. Chen, X. Zhang, R. Jia, et al., Adv. Synth. Catal. 360 (2018) 3781-3787;
      (c) P. Hu, Y. Zhang, Y. Xu, et al., Org. Lett. 20 (2018) 2160-2163;
      (d) H. Oh, S. Han, A.K. Pandey, et al., J. Org. Chem. 83 (2018) 4070-4077;
      (e) X. Wu, H. Xiong, S. Sun, et al., Org. Lett. 20 (2018) 1396-1399;
      (f) K.S. Halskov, M.R. Witten, G.L. Hoang, et al., Org. Lett. 20 (2018) 2464-2467;
      (g) M. Barday, C. Janot, N.R. Halcovitch, et al., Angew. Chem. Int. Ed. 129 (2017) 13297-13301;
      (h) J. Vaitla, A. Bayer, K.H. Hopmann, Angew. Chem. Int. Ed. 56 (2017) 4277-4281.

    10. [10]

      X. Cui, Z. Ban, W. Tian, et al., Org. Biomol. Chem. 17 (2019) 240-243.  doi: 10.1039/C8OB02818D

    11. [11]

      (a) Y. Xu, G. Zheng, X. Yang, et al., Chem. Commun. 54 (2018) 670-673;
      (b) G. Zheng, M. Tian, Y. Xu, et al., Org. Chem. Front. 5 (2018) 998-1002.

    12. [12]

      J.S. Sun, M. Liu, J. Zhang, L. Dong, J. Org. Chem. 83 (2018) 10555-10563.  doi: 10.1021/acs.joc.8b01354

    13. [13]

      T. Yuan, C. Pi, C. You, X. Cui, et al., Chem. Commun. 55 (2019) 163-166.  doi: 10.1039/C8CC08081J

    14. [14]

      (a) L. Wang, D. Xiong, L. Jie, et al., Chin. Chem. Lett. 29 (2018) 907-910;
      (b) F. Xu, Y.J. Li, C. Huang, H.C. Xu, ACS Catal. 8 (2018) 3820-3824.

    15. [15]

      V.K. Tiwari, N. Kamal, M. Kapur, Org. Lett. 17 (2015) 1766-1769.  doi: 10.1021/acs.orglett.5b00535

    16. [16]

      T. Okada, K. Nobushige, T. Satoh, M. Miura, Org. Lett. 18 (2016) 1150-1153.  doi: 10.1021/acs.orglett.6b00268

    17. [17]

      J. Jia, J. Shi, J. Zhou, X. Liu, et al., Chem. Commun. 51 (2015) 2925-2928.  doi: 10.1039/C4CC09823D

    18. [18]

      (a) L. Xu, T. Li, L. Wang, X. Cui, J. Org. Chem. 84 (2019) 560-567;
      (b) Z. Yang, L. Jie, Z. Yao, Z. Yang, X. Cui, Adv. Synth. Catal. 361 (2019) 214-218;
      (c) J. Xia, X. Yang, Y. Li, X. Li, Org. Lett. 19 (2017) 3243-3246;
      (d) C. Pi, X. Cui, X. Liu, M. Guo, et al., Org. Lett. 16 (2014) 5164-5167;
      (e) L. Li, W.W. Brennessel, W.D. Jones, Organometallics 28 (2009) 3492-3500.

  • 加载中
    1. [1]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    2. [2]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    3. [3]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    4. [4]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    5. [5]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    6. [6]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    7. [7]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    8. [8]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    9. [9]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    10. [10]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

    11. [11]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    12. [12]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    13. [13]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    14. [14]

      Jindong HaoYufen LvShuyue TianChao MaWenxiu CuiHuilan YueWei WeiDong Yi . Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P4S10 and alcohols. Chinese Chemical Letters, 2024, 35(9): 109513-. doi: 10.1016/j.cclet.2024.109513

Metrics
  • PDF Downloads(11)
  • Abstract views(1022)
  • HTML views(186)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return