Recent progress and perspectives of metal oxides based on-chip microsupercapacitors
- Corresponding author: Chen Di, chendi@ustb.edu.cn Shen Guozhen, gzshen@semi.ac.cn
Citation: Huang Tingting, Jiang Kai, Chen Di, Shen Guozhen. Recent progress and perspectives of metal oxides based on-chip microsupercapacitors[J]. Chinese Chemical Letters, ;2018, 29(4): 553-563. doi: 10.1016/j.cclet.2017.12.007
A. Devaraj, M. Gu, R. Colby, et al., Nat. Commun. 6(2015) 8014.
doi: 10.1038/ncomms9014
Z.S. Wu, K. Parvez, X. Feng, K. Mullen, et al., Nat. Commun. 4(2013) 2487.
B.H. Xie, C. Yang, Z.X. Zhang, et al., ACS Nano 9(2015) 5636-5645.
doi: 10.1021/acsnano.5b00899
G.M. Zhou, L. Li, D.W. Wang, et al., Adv. Mater. 27(2015) 641-647.
doi: 10.1002/adma.201404210
J. Lu, Y.J. Lee, X.Y. Luo, et al., Nature 529(2016) 377-382.
doi: 10.1038/nature16484
L. Liu, Z. Niu, J. Chen, Nano Res. 10(2017) 1524-1544.
doi: 10.1007/s12274-017-1448-z
L.L. Wang, W.B. Ng, J.A. Jackman, et al., Adv. Funct. Mater. 26(2016) 2097-2103.
doi: 10.1002/adfm.201504940
Z.S. Wu, X. Feng, H.M. Cheng, Natl. Sci. Rev. 1(2013) 277-292.
Q. Wang, X. Wang, J. Xu, et al., Nano Energy 8(2014) 44-51.
doi: 10.1016/j.nanoen.2014.05.014
Z.S. Wu, Y.Z. Tan, S. Zheng, et al., J. Am. Chem. Soc. 139(2017) 4506-4512.
doi: 10.1021/jacs.7b00805
H. Khani, D.O. Wipf, ACS Appl. Mater. Inter. 9(2017) 6967-6978.
doi: 10.1021/acsami.6b11498
S. Gu, Z. Lou, X. Ma, et al., ChemElectroChem 2(2015) 1042-1047.
doi: 10.1002/celc.v2.7
S.K. Kim, H.J. Kim, J.C. Lee, et al., ACS Nano 9(2015) 8569-8577.
doi: 10.1021/acsnano.5b03732
N.A. Kyeremateng, T. Brousse, D. Pech, Nat. Nanotechnol. 12(2017) 7-15.
D. Kim, J. Yun, G. Lee, et al., Nanoscale 6(2014) 12034-12041.
doi: 10.1039/C4NR04138K
J. Xu, G. Shen, Nano Energy 13(2015) 131-139.
doi: 10.1016/j.nanoen.2015.02.027
M. Beidaghi, C.L. Wang, Adv. Funct. Mater. 22(2012) 4501-4510.
doi: 10.1002/adfm.v22.21
J.J. Luo, F.R. Fan, T. Jiang, et al., Nano Res. 8(2015) 3934-3943.
doi: 10.1007/s12274-015-0894-8
N. Kurra, Q. Jiang, H.N. Alshareefn, Nano Energy 16(2015) 1-9.
doi: 10.1016/j.nanoen.2015.05.031
Y. Yue, Z. Yang, N. Liu, et al., ACS Nano 10(2016) 11249-11257.
doi: 10.1021/acsnano.6b06326
S.K. Kim, H.J. Koo, A. Lee, et al., Adv. Mater. 26(2014) 5108-5112.
doi: 10.1002/adma.201401525
W. Gao, N. Singh, L. Song, et al., Nat. Nanotechnol. 6(2011) 496-500.
doi: 10.1038/nnano.2011.110
Z.Y. Huang, Z. Zhang, X. Qi, et al., Nanoscale 8(2016) 13273-13279.
doi: 10.1039/C6NR04020A
H. Kim, J. Yoon, G. Lee, et al., ACS Appl. Mater. Inter. 8(2016) 16016-16025.
doi: 10.1021/acsami.6b03504
B. Liu, B.Y. Liu, X.F. Wang, et al., Adv. Mater. 26(2014) 4999-5004.
doi: 10.1002/adma.201401017
L.L. Wang, J.A. Jackman, W.B. Ng, et al., Adv. Funct. Mater. 26(2016) 8623-8630.
doi: 10.1002/adfm.v26.47
L. Wang, D. Chen, K. Jiang, et al., Chem. Soc. Rev. 46(2017) 6764-6815.
doi: 10.1039/C7CS00278E
L. Wang, J.A. Jackman, E.L. Tan, et al., Nano Energy 36(2017) 38-45.
doi: 10.1016/j.nanoen.2017.04.015
D. Gueon, J.H. Moon, ACS Sustain. Chem. Eng. 5(2017) 2445-2453.
doi: 10.1021/acssuschemeng.6b02803
N. Choudhary, C. Li, J. Moore, et al., Adv. Mater. 29(2017) 1605336.
doi: 10.1002/adma.201605336
D.H. Tang, S. Hu, F. Dai, et al., ACS Appl. Mater. Inter. 8(2016) 6779-6783.
doi: 10.1021/acsami.5b12164
Z.Q. Niu, W.J. Ma, J.Z. Li, et al., Adv. Funct. Mater. 22(2012) 5209-5215.
doi: 10.1002/adfm.v22.24
S. Zheng, X. Tang, Z.S. Wu, et al., ACS Nano 11(2017) 2171-2179.
doi: 10.1021/acsnano.6b08435
H. Xiao, Z.S. Wu, L. Chen, et al., ACS Nano 11(2017) 7284-7292.
doi: 10.1021/acsnano.7b03288
S. Zheng, Z. Li, Z.S. Wu, et al., ACS Nano 11(2017) 4009-4016.
doi: 10.1021/acsnano.7b00553
A.V. Radhamani, K.M. Shareef, M.S. Rao, ACS Appl. Mater. Interface 8(2016) 30531-30542.
doi: 10.1021/acsami.6b08082
N. Tang, X. Tian, C. Yang, et al., Mater. Res. Bull. 44(2009) 2062-2067.
doi: 10.1016/j.materresbull.2009.07.012
J. Chu, D. Lu, J. Ma, et al., Mater. Lett. 193(2017) 263-265.
doi: 10.1016/j.matlet.2017.01.140
E. Eustache, C. Douard, R. Retoux, et al., Adv. Energy Mater. 5(2015) 1500680.
doi: 10.1002/aenm.201500680
H. Jiang, T. Zhao, C. Yan, et al., Nanoscale 2(2010) 2195-2198.
doi: 10.1039/c0nr00257g
S.K. Meher, G.R. Rao, J. Phys. Chem. C 115(2011) 15646-15654.
doi: 10.1021/jp201200e
F. Meng, Z. Fang, Z. Li, et al., J. Mater. Chem. A 1(2013) 7235-7241.
doi: 10.1039/c3ta11054k
L. Wang, H. Ji, S. Wang, et al., Nanoscale 5(2013) 3793-3799.
doi: 10.1039/c3nr00256j
L. Gao, X. Wang, Z. Xie, et al., J. Mater. Chem. A 1(2013) 7167-7173.
doi: 10.1039/c3ta10831g
S. Zheng, Z.S. Wu, S. Wang, et al., Energy Storage Mater. 6(2017) 70-97.
doi: 10.1016/j.ensm.2016.10.003
X. Shi, Z.S. Wu, J. Qin, et al., Adv. Mater. 29(2017) 1703034.
doi: 10.1002/adma.201703034
S. Zheng, W. Lei, J. Qin, et al., Energy Storage Mater. 10(2018) 24-31.
doi: 10.1016/j.ensm.2017.08.002
Q. Wang, J. Xu, X. Wang, et al., ChemElectroChem 1(2014) 559-564.
doi: 10.1002/celc.201300084
L. Li, J. Zhang, Z. Peng, et al., Adv. Mater. 28(2016) 838-845.
doi: 10.1002/adma.v28.5
D. Kim, G. Lee, D. Kim, et al., Nanoscale 8(2016) 15611-15620.
doi: 10.1039/C6NR04352F
Z.S. Wu, Y. Zheng, S. Zheng, et al., Adv. Mater. 29(2017) 1602960.
doi: 10.1002/adma.v29.3
Q. Wang, B. Liu, X. Wang, et al., J. Mater. Chem. 22(2012) 21647-21653.
doi: 10.1039/c2jm34705a
X. Zhang, W. Shi, J. Zhu, W. Zhao, et al., Nano Res. 3(2010) 643-652.
doi: 10.1007/s12274-010-0024-6
Z. Wang, W. Jia, M. Jiang, et al., Nano Res. 9(2016) 2026-2033.
doi: 10.1007/s12274-016-1093-y
S.J. Peng, L.L. Li, Y.X. Hu, et al., ACS Nano 9(2015) 1945-1954.
doi: 10.1021/nn506851x
C. Niu, J. Meng, X. Wang, et al., Nat. Commun. 6(2015) 7402.
doi: 10.1038/ncomms8402
Y. Huang, Y.E. Miao, H. Lu, et al., Chemistry 21(2015) 10100-10108.
doi: 10.1002/chem.201500924
H. Jiang, T. Sun, C. Li, et al., J. Mater. Chem. 22(2012) 2751-2756.
doi: 10.1039/C1JM14732C
Q. Cheng, J. Tang, J. Ma, et al., Carbon 49(2011) 2917-2925.
doi: 10.1016/j.carbon.2011.02.068
Y. Lei, J. Li, Y. Wang, et al., ACS Appl. Mater. Interface 6(2014) 1773-1780.
doi: 10.1021/am404765y
X. Xu, J. Shen, N. Li, et al., J. Alloys Compd. 616(2014) 58-65.
doi: 10.1016/j.jallcom.2014.07.047
Y. Lan, X. Li, G. Li, et al., J. Nanopart. Res. 17(2015) 395.
doi: 10.1007/s11051-015-3200-5
L. Li, Z. Lou, W. Han, et al., Nanoscale 8(2016) 14986-14991.
doi: 10.1039/C6NR04945A
H. Wu, K. Jiang, S. Gu, et al., Nano Res. 8(2015) 3544-3552.
doi: 10.1007/s12274-015-0854-3
S. Gu, Z. Lou, L. Li, et al., Nano Res. 9(2015) 424-434.
N. Kurra, N.A. Alhebshi, H.N. Alshareef, Adv. Energy Mater. 5(2015) 1401303.
doi: 10.1002/aenm.201401303
Y.Q. Li, X.M. Shi, X.Y. Lang, et al., Adv. Funct. Mater. 26(2016) 1830-1839.
doi: 10.1002/adfm.v26.11
Z. Liu, X. Tian, X. Xu, et al., Nano Res. 10(2017) 2471-2481.
doi: 10.1007/s12274-017-1451-4
B.S. Shen, J.W. Lang, R.S. Guo, et al., ACS Appl. Mater. Interface 7(2015) 25378-25389.
doi: 10.1021/acsami.5b07909
J.G. Cai, C. Lv, A. Watanabe, RSC Adv. 7(2017) 415-422.
doi: 10.1039/C6RA25136F
M.F. El-Kady, M. Ihns, M. Li, et al., Proc. Natl. Acad. Sci. U. S. A.112(2015) 4233-4238.
doi: 10.1073/pnas.1420398112
M.H. Amiri, N. Namdar, A. Mashayekhi, et al., J. Nanopart. Res. 18(2016) 237.
doi: 10.1007/s11051-016-3552-5
Y. Wang, Y. Shi, C.X. Zhao, et al., Nanotechnology 25(2014) 094010.
doi: 10.1088/0957-4484/25/9/094010
Y.G. Zhu, Y. Wang, Y. Shi, et al., Nano Energy 3(2014) 46-54.
doi: 10.1016/j.nanoen.2013.10.006
H.B. Hu, Z.B. Pei, H.J. Fan, et al., Small 12(2016) 3059-3069.
doi: 10.1002/smll.201503527
D.P. Qi, Z.Y. Liu, Y. Liu, et al., Adv. Mater. 27(2015) 5559-5566.
doi: 10.1002/adma.201502549
W. Yu, H. Zhou, B.Q. Li, et al., ACS Appl. Mater. Inter. 9(2017) 4597-4604.
doi: 10.1021/acsami.6b13904
G.P. Xiong, C.Z. Meng, R.G. Reifenberger, et al., Electroanalysis 26(2014) 30-51.
doi: 10.1002/elan.201300238
P. Yadav, A. Basu, A. Suryawanshi, et al., Adv. Mater. Interface 3(2016) 1600057.
doi: 10.1002/admi.201600057
W. Si, C. Yan, Y. Chen, et al., Energy Environ. Sci. 6(2013) 3218-3223.
doi: 10.1039/c3ee41286e
B.S. Shen, H. Wang, L.J. Wu, et al., Chin. Chem. Lett. 27(2016) 1586-1591.
doi: 10.1016/j.cclet.2016.04.012
S. Wang, Z.S. Wu, S. Zheng, et al., ACS Nano 11(2017) 4283-4291.
doi: 10.1021/acsnano.7b01390
J. Qin, Z.S. Wu, F. Zhou, et al., Chin. Chem. Lett. 29(2018) 582-586.
doi: 10.1016/j.cclet.2017.08.007
Chunxiu Yu , Zelin Wu , Hongle Shi , Lingyun Gu , Kexin Chen , Chuan-Shu He , Yang Liu , Heng Zhang , Peng Zhou , Zhaokun Xiong , Bo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334
Tong Li , Leping Pan , Yan Zhang , Jihu Su , Kai Li , Kuiliang Li , Hu Chen , Qi Sun , Zhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897
Bowen Li , Ting Wang , Ming Xu , Yuqi Wang , Zhaoxing Li , Mei Liu , Wenjing Zhang , Ming Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Tinghui Yang , Min Kuang , Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350
Zeyu XU , Tongzhou LU , Haibo SHAO , Jianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164
Ningxiang Wu , Huaping Zhao , Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392
Juanjuan Wang , Fang Wang , Bin Qin , Yue Wu , Huan Yang , Xiaolong Li , Lanfang Wang , Xiufang Qin , Xiaohong Xu . Controlled synthesis and excellent magnetism of ferrimagnetic NiFe2Se4 nanostructures. Chinese Chemical Letters, 2024, 35(11): 109449-. doi: 10.1016/j.cclet.2023.109449
Jiangping Chen , Hongju Ren , Kai Wu , Huihuang Fang , Chongqi Chen , Li Lin , Yu Luo , Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Long Li , Kang Yang , Chenpeng Xi , Mengchao Li , Borong Li , Gui Xu , Yuanbin Xiao , Xiancai Cui , Zhiliang Liu , Lingyun Li , Yan Yu , Chengkai Yang . Highly-chlorinated inert and robust interphase without mineralization of oxide enhancing high-rate Li metal batteries. Chinese Chemical Letters, 2024, 35(6): 108814-. doi: 10.1016/j.cclet.2023.108814
Jiqing Liu , Qi Dang , Liting Wang , Dejin Wang , Liang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277
Lijun Yan , Shiqi Chen , Penglu Wang , Xiangyu Liu , Lupeng Han , Tingting Yan , Yuejin Li , Dengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132
Yuan Zhang , Shenghao Gong , A.R. Mahammed Shaheer , Rong Cao , Tianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587
Yang Yang , Jing-Li Luo , Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269
Kailong Zhang , Chao Zhang , Luanhui Wu , Qidong Yang , Jiadong Zhang , Guang Hu , Liang Song , Gaoran Li , Wenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618
Chuang LIU , Lichao SUN , Qingfeng ZHANG . Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 59-78. doi: 10.11862/CJIC.20240406
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2024.100193
Dong-Ling Kuang , Song Chen , Shaoru Chen , Yong-Jie Liao , Ning Li , Lai-Hon Chung , Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301