Citation: Liu Wei, Lei Chaojun, Zhang Hongxiu, Wu Xiaolin, Jia Qing, He Denghong, Yang Bin, Li Zhongjian, Hou Yang, Lei Lecheng, Zhang Xingwang. CuS/RGO hybrid by one-pot hydrothermal method for efficient electrochemical sensing of hydrogen peroxide[J]. Chinese Chemical Letters, ;2017, 28(6): 1306-1311. doi: 10.1016/j.cclet.2017.04.032 shu

CuS/RGO hybrid by one-pot hydrothermal method for efficient electrochemical sensing of hydrogen peroxide

  • Corresponding author: Zhang Xingwang, xwzhang@zju.edu.cn
  • Received Date: 31 March 2017
    Revised Date: 24 April 2017
    Accepted Date: 28 April 2017
    Available Online: 6 June 2017

Figures(7)

  • In this study, a non-enzymatic hydrogen peroxide sensor was successfully fabricated on the basis of copper sulfide nanoparticles/reduced graphene oxide (CuS/RGO) electrocatalyst. Using thiourea as reducing agent and sulfur donor, CuS/RGO hybrid was synthesized through a facile one-pot hydrothermal method, where the reduction of GO and deposition of CuS nanoparticles on RGO occur simultaneously. The results confirmed that the CuS/RGO hybrid helps to prevent the aggregation of CuS nanoparticles. Electrochemical investigation showed that the as-prepared hydrogen peroxide sensor exhibited a low detection limit of 0.18 μmol/L (S/N=3), a good reproducibility (relative standard deviation (RSD) of 4.21%), a wide linear range (from 3 to 1215 μmol/L) with a sensitivity of 216.9 μAL/mmol/cm2 under the optimal conditions. Moreover, the as-prepared sensor also showed excellent selectivity and stability for hydrogen peroxide detection. The excellent performance of CuS/RGO hybrid, especially the lower detection limit than certain enzymes and noble metal nanomaterials ever reported, makes it a promising candidate for non-enzymatic H2O2 sensors.
  • 加载中
    1. [1]

      Ma J., Song W., Chen C.. Fenton degradation of organic compounds promoted by dyes under visible irradiation[J]. Environ. Sci. Technol., 2005,39:5810-5815. doi: 10.1021/es050001x

    2. [2]

      Keen O.S., Baik S., Linden K.G., Aga D.S., Love N.G.. Enhanced biodegradation of carbamazepine after UV/H2O2 advanced oxidation[J]. Environ. Sci. Technol., 2012,46:6222-6227. doi: 10.1021/es300897u

    3. [3]

      Piwkowska A., Rogacka D., Jankowski M., Kocbuch K., Angielski S.. Hydrogen peroxide induces dimerization of protein kinase G type Ia subunits and increases albumin permeability in cultured rat podocytes[J]. J. Cell. Physiol., 2012,227:1004-1016. doi: 10.1002/jcp.22810

    4. [4]

      Yuan L., Lin W., Xie Y., Chen B., Zhu S.. Single fluorescent probe responds to H2O2 NO, and H2O2/NO with three different sets of fluorescence signals[J]. J. Am. Chem. Soc., 2011,134:1305-1315.

    5. [5]

      Lobnik A., Cajlakovi-ć M.. Sol-gel based optical sensor for continuous determination of dissolved hydrogen peroxide[J]. Sens. Actuators B:Chem., 2001,74:194-199. doi: 10.1016/S0925-4005(00)00733-4

    6. [6]

      King D.W., Cooper W.J., Rusak S.A.. Flow injection analysis of H2O2 in natural waters using acridinium ester chemiluminescence:method development and optimization using a kinetic model[J]. Anal. Chem., 2007,79:4169-4176. doi: 10.1021/ac062228w

    7. [7]

      Peng Y., Jiang D., Su L.. Mixed monolayers of ferrocenylalkanethiol and encapsulated horseradish peroxidase for sensitive and durable electrochemical detection of hydrogen peroxide[J]. Anal. Chem., 2009,81:9985-9992. doi: 10.1021/ac901833s

    8. [8]

      Han Y., Zheng J., Dong S.. A novel nonenzymatic hydrogen peroxide sensor based on Ag-MnO2-MWCNTs nanocomposites[J]. Electrochim. Acta, 2013,90:35-43. doi: 10.1016/j.electacta.2012.11.117

    9. [9]

      Afraz A., Rafati A.A., Hajian A.. Analytical sensing of hydrogen peroxide on Ag nanoparticles-multiwalled carbon nanotube-modified glassy carbon electrode[J]. J. Solid State Electr., 2013,17:2017-2025. doi: 10.1007/s10008-013-2057-8

    10. [10]

      Zhang L., Tian D.B., Zhu J.J.. Third generation biosensor based on myoglobin-TiO2/MWCNTs modified glassy carbon electrode[J]. Chin. Chem. Lett., 2008,19:965-968. doi: 10.1016/j.cclet.2008.04.027

    11. [11]

      Karyakin A.A., Karyakina E.E., Gorton L.. Amperometric biosensor for glutamate using Prussian blue-based artificial peroxidase as a transducer for hydrogen peroxide[J]. Anal. Chem., 2000,72:1720-1723. doi: 10.1021/ac990801o

    12. [12]

      Xiao Y., Ju H.X., Chen H.Y.. Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer[J]. Anal. Chim. Acta, 1999,391:73-82. doi: 10.1016/S0003-2670(99)00196-8

    13. [13]

      Williams A.K., Hupp J.T.. Sol-gel-encapsulated alcohol dehydrogenase as a versatile, environmentally stabilized sensor for alcohols and aldehydes[J]. J. Am. Chem. Soc., 1998,120:4366-4371. doi: 10.1021/ja973772c

    14. [14]

      Liu Z., Zhao B., Shi Y.. Novel nonenzymatic hydrogen peroxide sensor based on iron oxide-silver hybrid submicrospheres[J]. Talanta, 2010,81:1650-1654. doi: 10.1016/j.talanta.2010.03.019

    15. [15]

      Shoji E., Freund M.S.. Potentiometric sensors based on the inductive effect on the p K a of poly (aniline):a nonenzymatic glucose sensor[J]. J. Am. Chem. Soc., 2001,123:3383-3384. doi: 10.1021/ja005906j

    16. [16]

      Wang Y., Yang X., Bai J., Jiang X., Fan G.. High sensitivity hydrogen peroxide and hydrazine sensor based on silver nanocubes with rich {100} facets as an enhanced electrochemical sensing platform[J]. Biosens. Bioelectron., 2013,43:180-185. doi: 10.1016/j.bios.2012.10.099

    17. [17]

      Sun X., Guo S., Liu Y., Sun S.. Dumbbell-like PtPd-Fe3O4 nanoparticles for enhanced electrochemical detection of H2O2[J]. Nano Lett., 2012,12:4859-4863. doi: 10.1021/nl302358e

    18. [18]

      Jiang F., Yue R., Du Y., Xu J., Yang P.. A one-pot 'green' synthesis of Pd-decorated PEDOT nanospheres for nonenzymatic hydrogen peroxide sensing[J]. Biosens. Bioelectron., 2013,44:127-131. doi: 10.1016/j.bios.2013.01.003

    19. [19]

      Kafi A., Ahmadalinezhad A., Wang J., Thomas D.F., Chen A.. Direct growth of nanoporous Au and its application in electrochemical biosensing[J]. Biosens. Bioelectron., 2010,25:2458-2463. doi: 10.1016/j.bios.2010.04.006

    20. [20]

      Kan M.X., Wang X.J., Zhang H.M.. Detection of H2O2 at a composite film modified electrode with highly dispersed Ag nanoparticles in Nafion[J]. Chin. Chem. Lett., 2011,22:458-460. doi: 10.1016/j.cclet.2010.12.009

    21. [21]

      Guo S., Wen D., Zhai Y., Dong S., Wang E.. Platinum nanoparticle ensemble-ongraphene hybrid nanosheet:one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing[J]. ACS Nano, 2010,4:3959-3968. doi: 10.1021/nn100852h

    22. [22]

      Liu X., Swihart M.T.. Heavily-doped colloidal semiconductor and metal oxide nanocrystals:an emerging new class of plasmonic nanomaterials[J]. Chem. Soc. Rev., 2014,43:3908-3920. doi: 10.1039/C3CS60417A

    23. [23]

      Bai S., Xiong Y.. Some recent developments in surface and interface design for photocatalytic and electrocatalytic hybrid structures[J]. Chem. Commun., 2015,51:10261-10271. doi: 10.1039/C5CC02704G

    24. [24]

      Xu H.L., Zhang W.D.. Graphene oxide-MnO2 nanocomposite-modified glassy carbon electrode as an efficient sensor for H2O2[J]. Chin. Chem. Lett., 2017,28:143-148. doi: 10.1016/j.cclet.2016.10.008

    25. [25]

      Bagwe R.P., Hilliard L.R., Tan W.. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding[J]. Langmuir, 2006,22:4357-4362. doi: 10.1021/la052797j

    26. [26]

      Jin J.C., Xu Z.Q., Dong P.. One-step synthesis of silver nanoparticles using carbon dots as reducing and stabilizing agents and their antibacterial mechanisms[J]. Carbon, 2015,94:129-141. doi: 10.1016/j.carbon.2015.05.084

    27. [27]

      Jiang D., Du X., Liu Q.. One-step thermal-treatment route to fabricate well-dispersed ZnO nanocrystals on nitrogen-doped graphene for enhanced electrochemiluminescence and ultrasensitive detection of pentachlorophenol[J]. ACS Appl. Mater. Interfaces, 2015,7:3093-3100. doi: 10.1021/am507163z

    28. [28]

      Zhang X., Wang G., Gu A., Wei Y., Fang B.. CuS nanotubes for ultrasensitive nonenzymatic glucose sensors[J]. Chem. Commun., 2008:5945-5947.  

    29. [29]

      Jiang L., Yao M., Liu B.. Controlled synthesis of CeO2/graphene nanocomposites with highly enhanced optical and catalytic properties[J]. J. Phys. Chem. C, 2012,116:11741-11745. doi: 10.1021/jp3015113

    30. [30]

      Liu J., Xue D.. Rapid and scalable route to CuS biosensors:a microwave-assisted Cu-complex transformation into CuS nanotubes for ultrasensitive nonenzymatic glucose sensor[J]. J. Mater. Chem., 2011,21:223-228. doi: 10.1039/C0JM01714K

    31. [31]

      Wang Y., Shao Y., Matson D.W., Li J., Lin Y.. Nitrogen-doped graphene and its application in electrochemical biosensing[J]. ACS Nano, 2010,4:1790-1798. doi: 10.1021/nn100315s

    32. [32]

      Ju J., Chen W.. In situ growth of surfactant-free gold nanoparticles on nitrogendoped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments[J]. Anal. Chem., 2015,87:1903-1910. doi: 10.1021/ac5041555

    33. [33]

      Xu Y., Sheng K., Li C., Shi G.. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010,4:4324-4330. doi: 10.1021/nn101187z

    34. [34]

      Chua C.K., Pumera M.. Chemical reduction of graphene oxide:a synthetic chemistry viewpoint[J]. Chem. Soc. Rev., 2014,43:291-312. doi: 10.1039/C3CS60303B

    35. [35]

      Williams G., Seger B., Kamat P.V.. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide[J]. ACS Nano, 2008,2:1487-1491. doi: 10.1021/nn800251f

    36. [36]

      Dikin D.A., Stankovich S., Zimney E.J.. Preparation and characterization of graphene oxide paper[J]. Nature, 2007,448:457-460. doi: 10.1038/nature06016

    37. [37]

      Wang H., Robinson J.T., Li X., Dai H.. Solvothermal reduction of chemically exfoliated graphene sheets[J]. J. Am. Chem. Soc., 2009,131:9910-9911. doi: 10.1021/ja904251p

    38. [38]

      Zubir N.A., Yacou C., Motuzas J., Zhang X.. J.C.D. da Costa, Structural and functional investigation of graphene oxide-Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction[J]. Sci. Rep., 2014,44594.

    39. [39]

      Xu X., Li H., Zhang Q.. Self-sensing, ultralight, and conductive 3D graphene/iron oxide aerogel elastomer deformable in a magnetic field[J]. ACS Nano, 2015,9:3969-3977. doi: 10.1021/nn507426u

    40. [40]

      Li B., Xie Y., Xue Y.. Controllable synthesis of CuS nanostructures from selfassembled precursors with biomolecule assistance[J]. J. Phys. Chem. C, 2007,111:12181-12187.  

    41. [41]

      Zhang Y., Tian J., Li H.. Biomolecule-assisted environmentally friendly, one-pot synthesis of CuS/reduced graphene oxide nanocomposites with enhanced photocatalytic performance[J]. Langmuir, 2012,28:12893-12900. doi: 10.1021/la303049w

    42. [42]

      Wu C., Yu S.H., Chen S., Liu G., Liu B.. Large scale synthesis of uniform CuS nanotubes in ethylene glycol by a sacrificial templating method under mild conditions[J]. J. Mater. Chem., 2006,16:3326-3331. doi: 10.1039/b606226a

    43. [43]

      Bai J., Jiang X.. A facile one-pot synthesis of copper sulfide-decorated reduced graphene oxide composites for enhanced detecting of H2O2 in biological environments[J]. Anal. Chem., 2013,85:8095-8101. doi: 10.1021/ac400659u

    44. [44]

      Yang Y.J., Li W., Wu X.. Copper sulfide|reduced graphene oxide nanocomposite for detection of hydrazine and hydrogen peroxide at low potential in neutral medium[J]. Electrochim. Acta, 2014,123:260-267. doi: 10.1016/j.electacta.2014.01.046

    45. [45]

      Tian S., Baba A., Liu J.. Electroactivity of polyaniline multilayer films in neutral solution and their electrocatalyzed oxidation of β-nicotinamide adenine dinucleotide[J]. Adv. Funct. Mater., 2003,13:473-479. doi: 10.1002/adfm.200304320

    46. [46]

      Manga K.K., Zhou Y., Yan Y., Loh K.P.. Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties[J]. Adv. Funct. Mater., 2009,19:3638-3643. doi: 10.1002/adfm.v19:22

    47. [47]

      Cao A., Liu Z., Chu S.. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials[J]. Adv. Mater., 2010,22:103-106. doi: 10.1002/adma.v22:1

    48. [48]

      Dey D., Bhattacharya T., Majumdar B.. Carbon dot reduced palladium nanoparticles as active catalysts for carbon-carbon bond formation[J]. Dalton Trans., 2013,42:13821-13825. doi: 10.1039/c3dt51234g

    49. [49]

      Wei W., Chen W.. Naked Pd nanoparticles supported on carbon nanodots as efficient anode catalysts for methanol oxidation in alkaline fuel cells[J]. J. Power Sources, 2012,204:85-88. doi: 10.1016/j.jpowsour.2012.01.032

    50. [50]

      Cao C., Kim J.P., Kim B.W.. A strategy for sensitivity and specificity enhancements in prostate specific antigen-a 1-antichymotrypsin detection based on surface plasmon resonance[J]. Biosens. Bioelectron., 2006,21:2106-2113. doi: 10.1016/j.bios.2005.10.014

    51. [51]

      Zhao H., Zheng W., Meng Z.. Bioelectrochemistry of hemoglobin immobilized on a sodium alginate-multiwall carbon nanotubes composite film[J]. Biosens. Bioelectron., 2009,24:2352-2357. doi: 10.1016/j.bios.2008.12.004

    52. [52]

      Miao Y., Wang H., Shao Y.. Layer-by-layer assembled hybrid film of carbon nanotubes/iron oxide nanocrystals for reagentless electrochemical detection of H2O2[J]. Sens. Actuators B:Chem., 2009,138:182-188. doi: 10.1016/j.snb.2008.12.045

    53. [53]

      Liu W., Gao X.. C60 trianion-mediated electrocatalysis and amperometric sensing of hydrogen peroxide[J]. Electrochem. Commun., 2008,10:1377-1380. doi: 10.1016/j.elecom.2008.06.031

    54. [54]

      Cao X., Wang N., Wang L.. A novel non-enzymatic hydrogen peroxide biosensor based on ultralong manganite MnOOH nanowires[J]. Sens. Actuators B:Chem., 2010,147:730-734. doi: 10.1016/j.snb.2010.03.087

    55. [55]

      Liu M., Liu R., Chen W.. Graphene wrapped Cu2O nanocubes:non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability[J]. Biosens. Bioelectron., 2013,45:206-212. doi: 10.1016/j.bios.2013.02.010

    56. [56]

      Lee K.K., Loh P.Y., Sow C.H., Chin W.S.. CoOOH nanosheet electrodes:simple fabrication for sensitive electrochemical sensing of hydrogen peroxide and hydrazine[J]. Biosens. Bioelectron., 2013,39:255-260. doi: 10.1016/j.bios.2012.07.061

    57. [57]

      Ma M., Miao Z., Zhang D.. Highly-ordered perpendicularly immobilized FWCNTs on the thionine monolayer-modified electrode for hydrogen peroxide and glucose sensors[J]. Biosens. Bioelectron., 2015,64:477-484. doi: 10.1016/j.bios.2014.09.057

    58. [58]

      Dutta A.K., Das S., Samanta P.K.. Non-enzymatic amperometric sensing of hydrogen peroxide at a CuS modified electrode for the determination of urine H2O2[J]. Electrochimi. Acta, 2014,144:282-287. doi: 10.1016/j.electacta.2014.08.051

  • 加载中
    1. [1]

      Zhong-Hui SunYu-Qi ZhangZhen-Yi GuDong-Yang QuHong-Yu GuanXing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590

    2. [2]

      Hao LvZhi LiPeng YinPing WanMingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457

    3. [3]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    4. [4]

      Zhaomin TangQian HeJianren ZhouShuang YanLi JiangYudong WangChenxing YaoHuangzhao WeiKeda YangJiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742

    5. [5]

      Changzhu HuangWei DaiShimao DengYixin TianXiaolin LiuJia LinHong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429

    6. [6]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    7. [7]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    8. [8]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    9. [9]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    10. [10]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    11. [11]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    12. [12]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    13. [13]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    14. [14]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    15. [15]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    16. [16]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    17. [17]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    18. [18]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    19. [19]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    20. [20]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

Metrics
  • PDF Downloads(0)
  • Abstract views(803)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return