CuS/RGO hybrid by one-pot hydrothermal method for efficient electrochemical sensing of hydrogen peroxide
- Corresponding author: Zhang Xingwang, xwzhang@zju.edu.cn
Citation:
Liu Wei, Lei Chaojun, Zhang Hongxiu, Wu Xiaolin, Jia Qing, He Denghong, Yang Bin, Li Zhongjian, Hou Yang, Lei Lecheng, Zhang Xingwang. CuS/RGO hybrid by one-pot hydrothermal method for efficient electrochemical sensing of hydrogen peroxide[J]. Chinese Chemical Letters,
;2017, 28(6): 1306-1311.
doi:
10.1016/j.cclet.2017.04.032
Ma J., Song W., Chen C.. Fenton degradation of organic compounds promoted by dyes under visible irradiation[J]. Environ. Sci. Technol., 2005,39:5810-5815. doi: 10.1021/es050001x
Keen O.S., Baik S., Linden K.G., Aga D.S., Love N.G.. Enhanced biodegradation of carbamazepine after UV/H2O2 advanced oxidation[J]. Environ. Sci. Technol., 2012,46:6222-6227. doi: 10.1021/es300897u
Piwkowska A., Rogacka D., Jankowski M., Kocbuch K., Angielski S.. Hydrogen peroxide induces dimerization of protein kinase G type Ia subunits and increases albumin permeability in cultured rat podocytes[J]. J. Cell. Physiol., 2012,227:1004-1016. doi: 10.1002/jcp.22810
Yuan L., Lin W., Xie Y., Chen B., Zhu S.. Single fluorescent probe responds to H2O2 NO, and H2O2/NO with three different sets of fluorescence signals[J]. J. Am. Chem. Soc., 2011,134:1305-1315.
Lobnik A., Cajlakovi-ć M.. Sol-gel based optical sensor for continuous determination of dissolved hydrogen peroxide[J]. Sens. Actuators B:Chem., 2001,74:194-199. doi: 10.1016/S0925-4005(00)00733-4
King D.W., Cooper W.J., Rusak S.A.. Flow injection analysis of H2O2 in natural waters using acridinium ester chemiluminescence:method development and optimization using a kinetic model[J]. Anal. Chem., 2007,79:4169-4176. doi: 10.1021/ac062228w
Peng Y., Jiang D., Su L.. Mixed monolayers of ferrocenylalkanethiol and encapsulated horseradish peroxidase for sensitive and durable electrochemical detection of hydrogen peroxide[J]. Anal. Chem., 2009,81:9985-9992. doi: 10.1021/ac901833s
Han Y., Zheng J., Dong S.. A novel nonenzymatic hydrogen peroxide sensor based on Ag-MnO2-MWCNTs nanocomposites[J]. Electrochim. Acta, 2013,90:35-43. doi: 10.1016/j.electacta.2012.11.117
Afraz A., Rafati A.A., Hajian A.. Analytical sensing of hydrogen peroxide on Ag nanoparticles-multiwalled carbon nanotube-modified glassy carbon electrode[J]. J. Solid State Electr., 2013,17:2017-2025. doi: 10.1007/s10008-013-2057-8
Zhang L., Tian D.B., Zhu J.J.. Third generation biosensor based on myoglobin-TiO2/MWCNTs modified glassy carbon electrode[J]. Chin. Chem. Lett., 2008,19:965-968. doi: 10.1016/j.cclet.2008.04.027
Karyakin A.A., Karyakina E.E., Gorton L.. Amperometric biosensor for glutamate using Prussian blue-based artificial peroxidase as a transducer for hydrogen peroxide[J]. Anal. Chem., 2000,72:1720-1723. doi: 10.1021/ac990801o
Xiao Y., Ju H.X., Chen H.Y.. Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer[J]. Anal. Chim. Acta, 1999,391:73-82. doi: 10.1016/S0003-2670(99)00196-8
Williams A.K., Hupp J.T.. Sol-gel-encapsulated alcohol dehydrogenase as a versatile, environmentally stabilized sensor for alcohols and aldehydes[J]. J. Am. Chem. Soc., 1998,120:4366-4371. doi: 10.1021/ja973772c
Liu Z., Zhao B., Shi Y.. Novel nonenzymatic hydrogen peroxide sensor based on iron oxide-silver hybrid submicrospheres[J]. Talanta, 2010,81:1650-1654. doi: 10.1016/j.talanta.2010.03.019
Shoji E., Freund M.S.. Potentiometric sensors based on the inductive effect on the p K a of poly (aniline):a nonenzymatic glucose sensor[J]. J. Am. Chem. Soc., 2001,123:3383-3384. doi: 10.1021/ja005906j
Wang Y., Yang X., Bai J., Jiang X., Fan G.. High sensitivity hydrogen peroxide and hydrazine sensor based on silver nanocubes with rich {100} facets as an enhanced electrochemical sensing platform[J]. Biosens. Bioelectron., 2013,43:180-185. doi: 10.1016/j.bios.2012.10.099
Sun X., Guo S., Liu Y., Sun S.. Dumbbell-like PtPd-Fe3O4 nanoparticles for enhanced electrochemical detection of H2O2[J]. Nano Lett., 2012,12:4859-4863. doi: 10.1021/nl302358e
Jiang F., Yue R., Du Y., Xu J., Yang P.. A one-pot 'green' synthesis of Pd-decorated PEDOT nanospheres for nonenzymatic hydrogen peroxide sensing[J]. Biosens. Bioelectron., 2013,44:127-131. doi: 10.1016/j.bios.2013.01.003
Kafi A., Ahmadalinezhad A., Wang J., Thomas D.F., Chen A.. Direct growth of nanoporous Au and its application in electrochemical biosensing[J]. Biosens. Bioelectron., 2010,25:2458-2463. doi: 10.1016/j.bios.2010.04.006
Kan M.X., Wang X.J., Zhang H.M.. Detection of H2O2 at a composite film modified electrode with highly dispersed Ag nanoparticles in Nafion[J]. Chin. Chem. Lett., 2011,22:458-460. doi: 10.1016/j.cclet.2010.12.009
Guo S., Wen D., Zhai Y., Dong S., Wang E.. Platinum nanoparticle ensemble-ongraphene hybrid nanosheet:one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing[J]. ACS Nano, 2010,4:3959-3968. doi: 10.1021/nn100852h
Liu X., Swihart M.T.. Heavily-doped colloidal semiconductor and metal oxide nanocrystals:an emerging new class of plasmonic nanomaterials[J]. Chem. Soc. Rev., 2014,43:3908-3920. doi: 10.1039/C3CS60417A
Bai S., Xiong Y.. Some recent developments in surface and interface design for photocatalytic and electrocatalytic hybrid structures[J]. Chem. Commun., 2015,51:10261-10271. doi: 10.1039/C5CC02704G
Xu H.L., Zhang W.D.. Graphene oxide-MnO2 nanocomposite-modified glassy carbon electrode as an efficient sensor for H2O2[J]. Chin. Chem. Lett., 2017,28:143-148. doi: 10.1016/j.cclet.2016.10.008
Bagwe R.P., Hilliard L.R., Tan W.. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding[J]. Langmuir, 2006,22:4357-4362. doi: 10.1021/la052797j
Jin J.C., Xu Z.Q., Dong P.. One-step synthesis of silver nanoparticles using carbon dots as reducing and stabilizing agents and their antibacterial mechanisms[J]. Carbon, 2015,94:129-141. doi: 10.1016/j.carbon.2015.05.084
Jiang D., Du X., Liu Q.. One-step thermal-treatment route to fabricate well-dispersed ZnO nanocrystals on nitrogen-doped graphene for enhanced electrochemiluminescence and ultrasensitive detection of pentachlorophenol[J]. ACS Appl. Mater. Interfaces, 2015,7:3093-3100. doi: 10.1021/am507163z
Zhang X., Wang G., Gu A., Wei Y., Fang B.. CuS nanotubes for ultrasensitive nonenzymatic glucose sensors[J]. Chem. Commun., 2008:5945-5947.
Jiang L., Yao M., Liu B.. Controlled synthesis of CeO2/graphene nanocomposites with highly enhanced optical and catalytic properties[J]. J. Phys. Chem. C, 2012,116:11741-11745. doi: 10.1021/jp3015113
Liu J., Xue D.. Rapid and scalable route to CuS biosensors:a microwave-assisted Cu-complex transformation into CuS nanotubes for ultrasensitive nonenzymatic glucose sensor[J]. J. Mater. Chem., 2011,21:223-228. doi: 10.1039/C0JM01714K
Wang Y., Shao Y., Matson D.W., Li J., Lin Y.. Nitrogen-doped graphene and its application in electrochemical biosensing[J]. ACS Nano, 2010,4:1790-1798. doi: 10.1021/nn100315s
Ju J., Chen W.. In situ growth of surfactant-free gold nanoparticles on nitrogendoped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments[J]. Anal. Chem., 2015,87:1903-1910. doi: 10.1021/ac5041555
Xu Y., Sheng K., Li C., Shi G.. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010,4:4324-4330. doi: 10.1021/nn101187z
Chua C.K., Pumera M.. Chemical reduction of graphene oxide:a synthetic chemistry viewpoint[J]. Chem. Soc. Rev., 2014,43:291-312. doi: 10.1039/C3CS60303B
Williams G., Seger B., Kamat P.V.. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide[J]. ACS Nano, 2008,2:1487-1491. doi: 10.1021/nn800251f
Dikin D.A., Stankovich S., Zimney E.J.. Preparation and characterization of graphene oxide paper[J]. Nature, 2007,448:457-460. doi: 10.1038/nature06016
Wang H., Robinson J.T., Li X., Dai H.. Solvothermal reduction of chemically exfoliated graphene sheets[J]. J. Am. Chem. Soc., 2009,131:9910-9911. doi: 10.1021/ja904251p
Zubir N.A., Yacou C., Motuzas J., Zhang X.. J.C.D. da Costa, Structural and functional investigation of graphene oxide-Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction[J]. Sci. Rep., 2014,44594.
Xu X., Li H., Zhang Q.. Self-sensing, ultralight, and conductive 3D graphene/iron oxide aerogel elastomer deformable in a magnetic field[J]. ACS Nano, 2015,9:3969-3977. doi: 10.1021/nn507426u
Li B., Xie Y., Xue Y.. Controllable synthesis of CuS nanostructures from selfassembled precursors with biomolecule assistance[J]. J. Phys. Chem. C, 2007,111:12181-12187.
Zhang Y., Tian J., Li H.. Biomolecule-assisted environmentally friendly, one-pot synthesis of CuS/reduced graphene oxide nanocomposites with enhanced photocatalytic performance[J]. Langmuir, 2012,28:12893-12900. doi: 10.1021/la303049w
Wu C., Yu S.H., Chen S., Liu G., Liu B.. Large scale synthesis of uniform CuS nanotubes in ethylene glycol by a sacrificial templating method under mild conditions[J]. J. Mater. Chem., 2006,16:3326-3331. doi: 10.1039/b606226a
Bai J., Jiang X.. A facile one-pot synthesis of copper sulfide-decorated reduced graphene oxide composites for enhanced detecting of H2O2 in biological environments[J]. Anal. Chem., 2013,85:8095-8101. doi: 10.1021/ac400659u
Yang Y.J., Li W., Wu X.. Copper sulfide|reduced graphene oxide nanocomposite for detection of hydrazine and hydrogen peroxide at low potential in neutral medium[J]. Electrochim. Acta, 2014,123:260-267. doi: 10.1016/j.electacta.2014.01.046
Tian S., Baba A., Liu J.. Electroactivity of polyaniline multilayer films in neutral solution and their electrocatalyzed oxidation of β-nicotinamide adenine dinucleotide[J]. Adv. Funct. Mater., 2003,13:473-479. doi: 10.1002/adfm.200304320
Manga K.K., Zhou Y., Yan Y., Loh K.P.. Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties[J]. Adv. Funct. Mater., 2009,19:3638-3643. doi: 10.1002/adfm.v19:22
Cao A., Liu Z., Chu S.. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials[J]. Adv. Mater., 2010,22:103-106. doi: 10.1002/adma.v22:1
Dey D., Bhattacharya T., Majumdar B.. Carbon dot reduced palladium nanoparticles as active catalysts for carbon-carbon bond formation[J]. Dalton Trans., 2013,42:13821-13825. doi: 10.1039/c3dt51234g
Wei W., Chen W.. Naked Pd nanoparticles supported on carbon nanodots as efficient anode catalysts for methanol oxidation in alkaline fuel cells[J]. J. Power Sources, 2012,204:85-88. doi: 10.1016/j.jpowsour.2012.01.032
Cao C., Kim J.P., Kim B.W.. A strategy for sensitivity and specificity enhancements in prostate specific antigen-a 1-antichymotrypsin detection based on surface plasmon resonance[J]. Biosens. Bioelectron., 2006,21:2106-2113. doi: 10.1016/j.bios.2005.10.014
Zhao H., Zheng W., Meng Z.. Bioelectrochemistry of hemoglobin immobilized on a sodium alginate-multiwall carbon nanotubes composite film[J]. Biosens. Bioelectron., 2009,24:2352-2357. doi: 10.1016/j.bios.2008.12.004
Miao Y., Wang H., Shao Y.. Layer-by-layer assembled hybrid film of carbon nanotubes/iron oxide nanocrystals for reagentless electrochemical detection of H2O2[J]. Sens. Actuators B:Chem., 2009,138:182-188. doi: 10.1016/j.snb.2008.12.045
Liu W., Gao X.. C60 trianion-mediated electrocatalysis and amperometric sensing of hydrogen peroxide[J]. Electrochem. Commun., 2008,10:1377-1380. doi: 10.1016/j.elecom.2008.06.031
Cao X., Wang N., Wang L.. A novel non-enzymatic hydrogen peroxide biosensor based on ultralong manganite MnOOH nanowires[J]. Sens. Actuators B:Chem., 2010,147:730-734. doi: 10.1016/j.snb.2010.03.087
Liu M., Liu R., Chen W.. Graphene wrapped Cu2O nanocubes:non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability[J]. Biosens. Bioelectron., 2013,45:206-212. doi: 10.1016/j.bios.2013.02.010
Lee K.K., Loh P.Y., Sow C.H., Chin W.S.. CoOOH nanosheet electrodes:simple fabrication for sensitive electrochemical sensing of hydrogen peroxide and hydrazine[J]. Biosens. Bioelectron., 2013,39:255-260. doi: 10.1016/j.bios.2012.07.061
Ma M., Miao Z., Zhang D.. Highly-ordered perpendicularly immobilized FWCNTs on the thionine monolayer-modified electrode for hydrogen peroxide and glucose sensors[J]. Biosens. Bioelectron., 2015,64:477-484. doi: 10.1016/j.bios.2014.09.057
Dutta A.K., Das S., Samanta P.K.. Non-enzymatic amperometric sensing of hydrogen peroxide at a CuS modified electrode for the determination of urine H2O2[J]. Electrochimi. Acta, 2014,144:282-287. doi: 10.1016/j.electacta.2014.08.051
Zhong-Hui Sun , Yu-Qi Zhang , Zhen-Yi Gu , Dong-Yang Qu , Hong-Yu Guan , Xing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590
Hao Lv , Zhi Li , Peng Yin , Ping Wan , Mingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
Zhaomin Tang , Qian He , Jianren Zhou , Shuang Yan , Li Jiang , Yudong Wang , Chenxing Yao , Huangzhao Wei , Keda Yang , Jiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742
Changzhu Huang , Wei Dai , Shimao Deng , Yixin Tian , Xiaolin Liu , Jia Lin , Hong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429
Yunkang Tong , Haiqiao Huang , Haolan Li , Mingle Li , Wen Sun , Jianjun Du , Jiangli Fan , Lei Wang , Bin Liu , Xiaoqiang Chen , Xiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663
Pingping HAO , Fangfang LI , Yawen WANG , Houfen LI , Xiao ZHANG , Rui LI , Lei WANG , Jianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054
Yihong Li , Zhong Qiu , Lei Huang , Shenghui Shen , Ping Liu , Haomiao Zhang , Feng Cao , Xinping He , Jun Zhang , Yang Xia , Xinqi Liang , Chen Wang , Wangjun Wan , Yongqi Zhang , Minghua Chen , Wenkui Zhang , Hui Huang , Yongping Gan , Xinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
Zhipeng Wan , Hao Xu , Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298
Hong Yin , Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382
Fabrice Nelly Habarugira , Ducheng Yao , Wei Miao , Chengcheng Chu , Zhong Chen , Shun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886
Tiantian Li , Ruochen Jin , Bin Wu , Dongming Lan , Yunjian Ma , Yonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Jie Zhou , Chuanxiang Zhang , Changchun Hu , Shuo Li , Yuan Liu , Zhu Chen , Song Li , Hui Chen , Rokayya Sami , Yan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561