Crystalline inclusion complexes formed between the drug diflunisal and block copolymers
- Corresponding author: Huang Yanbin, yanbin@tsinghua.edu.cn Xu Jun, jun-xu@tsinghua.edu.cn
Citation: Zhong Zhi, Yang Xiaotong, Fu Xiao-Bin, Yao Ye-Feng, Guo Bao-Hua, Huang Yanbin, Xu Jun. Crystalline inclusion complexes formed between the drug diflunisal and block copolymers[J]. Chinese Chemical Letters, ;2017, 28(6): 1268-1275. doi: 10.1016/j.cclet.2017.04.001
Gardner C.R., Walsh C.T., Almarsson O.. Drugs as materials:valuing physical form in drug discovery[J]. Nat. Rev. Drug Discovery, 2004,3:926-934. doi: 10.1038/nrd1550
Kawabata Y., Wada K., Nakatani M., Yamada S., Onoue S.. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system:basic approaches and practical applications[J]. Int. J. Pharm., 2011,420:1-10. doi: 10.1016/j.ijpharm.2011.08.032
Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J.. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings[J]. Adv. Drug Delivery Rev., 2001,46:3-26. doi: 10.1016/S0169-409X(00)00129-0
Lipinski C.A.. Drug-like properties and the causes of poor solubility and poor permeability[J]. J. Pharmacol. Toxicol. Methods, 2000,44:235-249. doi: 10.1016/S1056-8719(00)00107-6
Williams H.D., Trevaskis N.L., Charman S.A.. Strategies to address low drug solubility in discovery and development[J]. Pharmacol. Rev., 2013,65:315-499. doi: 10.1124/pr.112.005660
Pudipeddi M., Serajuddin A.T.M.. Trends in solubility of polymorphs[J]. J. Pharm. Sci., 2005,94:929-939. doi: 10.1002/jps.20302
Viscomi G.C., Campana M., Barbanti M.. Crystal forms of rifaximin and their effect on pharmaceutical properties[J]. CrystEngComm, 2008,10:1074-1081. doi: 10.1039/b717887e
Babu N.J., Nangia A.. Solubility advantage of amorphous drugs and pharmaceutical cocrystals[J]. Cryst. Growth Des., 2011,11:2662-2679. doi: 10.1021/cg200492w
Schultheiss N., Newman A.. Pharmaceutical cocrystals and their physicochemical properties[J]. Cryst. Growth Des., 2009,9:2950-2967. doi: 10.1021/cg900129f
Bolla G., Nangia A.. Pharmaceutical cocrystals:walking the talk[J]. Chem. Commun., 2016,52:8342-8360. doi: 10.1039/C6CC02943D
Duggirala N.K., Perry M.L., Almarsson O., Zaworotko M.J.. Pharmaceutical cocrystals:along the path to improved medicines[J]. Chem. Commun., 2016,52:640-655. doi: 10.1039/C5CC08216A
Serajuddin A.T.M.. Salt formation to improve drug solubility[J]. Adv. Drug Delivery Rev., 2007,59:603-616. doi: 10.1016/j.addr.2007.05.010
Avdeef A.. Solubility of sparingly-soluble ionizable drugs[J]. Adv. Drug Delivery Rev., 2007,59:568-590. doi: 10.1016/j.addr.2007.05.008
Huang Y., Dai W.G.. Fundamental aspects of solid dispersion technology for poorly soluble drugs[J]. Acta Pharmacol. Sin. B, 2014,4:18-25. doi: 10.1016/j.apsb.2013.11.001
Janssens S., Van den Mooter G.. Review:physical chemistry of solid dispersions[J]. J. Pharm. Pharmacol., 2009,61:1571-1586. doi: 10.1211/jpp.61.12.0001
Zhong Z., Guo C., Yang X.. Drug molecule diflunisal forms crystalline inclusion complexes with multiple types of linear polymers[J]. Cryst. Growth Des., 2016,16:1181-1186. doi: 10.1021/acs.cgd.6b00010
Zhong Z., Guo C., Chen L., Xu J., Huang Y.. Co-crystal formation between poly (ethylene glycol) and a small molecular drug griseofulvin[J]. Chem. Commun., 2014,50:6375-6378. doi: 10.1039/C4CC00159A
Sun C.C.. Novel Co-crystals between polyethylene glycols and 5-phenylpyrazolyl-1-benzene-sulfonamides[J]. PCT Pat. Appl., 20062006/024930 A1.
Yang X., Zhong Z., Huang Y.. The effect of PEG molecular weights on the thermal stability and dissolution behaviors of griseofulvin-PEG crystalline inclusion complexes[J]. Int. J. Pharm., 2016,508:51-60. doi: 10.1016/j.ijpharm.2016.05.014
Zhong Z., Yang X., Guo B., Xu J., Huang Y.. Dissolution behavior of the crystalline inclusion complex formed by the drug diflunisal and poly (ε-caprolactone)[J]. Cryst. Growth Des., 2017,17:355-362. doi: 10.1021/acs.cgd.6b01578
Porbeni F.E., Shin I.D., Shuai X.. Morphology and dynamics of the poly (ε-caprolactone)-b-poly(L-lactide)diblock copolymer and its inclusion compound with α-cyclodextrin:A solid-state 13C NMR study[J]. J. Polym. Sci. Part B:Polym. Phys., 2005,43:2086-2096. doi: 10.1002/(ISSN)1099-0488
Lu J., Shin I.D., Nojima S., Tonelli A.E.. Formation and characterization of the inclusion compounds between poly(ε-caprolactone)-poly(ethylene oxide)-poly(ε-caprolactone)triblock copolymer and α-and γ-cyclodextrin[J]. Polymer, 2000,41:5871-5883. doi: 10.1016/S0032-3861(99)00773-9
Li J., Ni X., Zhou Z., Leong K.W.. Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly (propylene oxide)-poly(ethylene oxide)-poly (propylene oxide) triblock copolymers and α-cyclodextrin[J]. J. Am. Chem. Soc., 2003,125:1788-1795. doi: 10.1021/ja026623p
Li X., Li J., Leong K.W.. Role of intermolecular interaction between hydrophobic blocks in block-selected inclusion complexation of amphiphilic poly (ethylene oxide)-poly[J]. Polymer, 2004,45:6845-6851. doi: 10.1016/j.polymer.2004.07.038
Bracco S., Comotti A., Ferretti L., Sozzani P.. Supramolecular aggregation of block copolymers in the solid state as assisted by the selective formation of inclusion crystals[J]. J. Am. Chem. Soc., 2011,133:8982-8994. doi: 10.1021/ja201551n
Vasanthan N., Shin I.D., Huang L., Nojima S., Tonelli A.E.. Formation, characterization, and segmental mobilities of block copolymers in their urea inclusion compound crystals[J]. Macromolecules, 1997,30:3014-3025. doi: 10.1021/ma970213h
Martínez-Oha'rriz M.C., Martín C., Goñi M.M.. Polymorphism of diflunisal:Isolation and solid-state characteristics of a new crystal form[J]. J. Pharm. Sci., 1994,83:174-177. doi: 10.1002/jps.2600830212
Cross W.I., Blagden N., Davey R.J.. A whole output strategy for polymorph screening:combining crystal structure prediction, graph set analysis, and targeted crystallization experiments in the case of diflunisal[J]. Cryst. Growth Des., 2003,3:151-158. doi: 10.1021/cg025589n
Hansen L.K., Perlovich G.L., Bauer-Brandl A.. Diflunisal-hexane (4/1)[J]. Acta Crystallogr, Sect. E:Struct. Rep. Online, 2001,57:o604-o606. doi: 10.1107/S1600536801008558
Hansen L.K., Perlovich G.L., Bauer-Brandl A.. The 1:1 hydrate of diflunisal[J]. Acta Crystallogr, Sect. E:Struct. Rep. Online, 2001,57:o477-o479. doi: 10.1107/S1600536801006973
Sozzani P., Comotti A., Bracco S., Simonutti R.. Cooperation of multiple CH…π interactions to stabilize polymers in aromatic nanochannels as indicated by 2D solid state NMR[J]. Chem. Commun., 2004,7:768-769.
Bracco S., Comotti A., Valsesia P., Beretta M., Sozzani P.. Self-assembly of 1, 4-cis-polybutadiene and an aromatic host to fabricate nanostructured crystals by CH…π interactions[J]. CrystEngComm, 2010,12:2318-2321. doi: 10.1039/c002931a
Yan X., Peng B., Hu B., Chen Q.. PEO-urea-LiTFSI ternary complex as solid polymer electrolytes[J]. Polymer, 2016,99:44-48. doi: 10.1016/j.polymer.2016.06.056
Kobr L., Zhao K., Shen Y., Michl J.. Inclusion compound based approach to arrays of artificial dipolar molecular rotors. A surface inclusion[J]. J. Am. Chem. Soc., 2012,134:10122-10131. doi: 10.1021/ja302173y
Vanderhart D.L.. Influence of molecular packing on solid-state 13C chemical shifts:the n-alkane[J]. J. Magn. Reson., 1981,44:117-125.
Pe'rez E., Vanderhart D.L.. Solid-state 13C nuclear magnetic resonance investigation of poly(oxetanes):effect of chain conformation[J]. Polymer, 1987,28:733-738. doi: 10.1016/0032-3861(87)90221-7
Tonelli A.E.. Are the steric effects on the 13C-NMR chemical shifts of hydrocarbon polymers really long range[J]. Macromolecules, 1979,12:255-256. doi: 10.1021/ma60068a017
Bittiger H., Marchessault R.H., Niegisch W.D.. Crystal structure of poly-ε-caprolactone, Acta Crystallogr[J]. Sect. B:Struct. Crystallogr. Cryst. Chem., 1970,26:1923-1927. doi: 10.1107/S0567740870005198
Tadokoro H., Chatani Y., Yoshihara T., Tahara S., Murahashi S.. Structural studies on polyethers, [-(CH2)m-O-]n. Ⅱ. Molecular structure of polyethylene oxide[J]. Makromol. Chem., 1964,73:109-127.
Takahash Y., Sumita I., Tadokoro H.. Structural studies of polyethers. Ⅸ. Planar zigzag modification of poly(ethylene oxide)[J]. J. Polym. Sci., Part B:Polym. Phys., 1973,11:2113-2122. doi: 10.1002/pol.1973.180111103
Tao J., Sun Y., Zhang G.G.Z., Yu L.. Solubility of small-molecule crystals in polymers:D-mannitol in PVP, indomethacin in PVP/VA, and nifedipine in PVP/VA[J]. Pharm. Res., 2009,26:855-864. doi: 10.1007/s11095-008-9784-z
Lin D., Huang Y.. A thermal analysis method to predict the complete phase diagram of drug-polymer solid dispersions[J]. Int. J. Pharm., 2010,399:109-115. doi: 10.1016/j.ijpharm.2010.08.013
Shehla Khalid , Muhammad Bilal , Nasir Rasool , Muhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498
Guizhi Zhu , Junrui Tan , Longfei Tan , Qiong Wu , Xiangling Ren , Changhui Fu , Zhihui Chen , Xianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669
Shunshun Jiang , Ji Zhang , Jing Wang , Shan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955
Bo Yang , Pu-An Lin , Tingwei Zhou , Xiaojia Zheng , Bing Cai , Wen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425
Kezhen Qi , Shu-yuan Liu , Ruchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460
Qian Wang , Yeping Bian , Gagan Dhawan , Wei Zhang , Alexander E. Sorochinsky , Ata Makarem , Vadim A. Soloshonok , Jianlin Han . FDA approved fluorine-containing drugs in 2023. Chinese Chemical Letters, 2024, 35(11): 109780-. doi: 10.1016/j.cclet.2024.109780
Hong Chen , Mao-Yin Ran , Long-Hua Li , Xin-Tao Wu , Hua Lin . [Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100397-100397. doi: 10.1016/j.cjsc.2024.100397
Yingjie Wang , Peng Tang , Wenchao Tu , Qi Gao , Cuizhu Wang , Luying Tan , Lixin Zhao , Hongye Han , Liefeng Ma , Kouharu Otsuki , Weilie Xiao , Wenli Wang , Jinping Liu , Yong Li , Zhajun Zhan , Wei Li , Xianli Zhou , Ning Li . Highly anticipated natural diterpenoids as an important source of new drugs in 2013–2023. Chinese Chemical Letters, 2025, 36(1): 109955-. doi: 10.1016/j.cclet.2024.109955
Lingjiang Kou , Yong Wang , Jiajia Song , Taotao Ai , Wenhu Li , Mohammad Yeganeh Ghotbi , Panya Wattanapaphawong , Koji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368
Xinzhi Ding , Chong Liu , Jing Niu , Nan Chen , Shutao Xu , Yingxu Wei , Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247
Yunjie Dang , Yanru Feng , Xiao Chen , Chaoxing He , Shujie Wei , Dingyang Liu , Jinlong Qi , Huaxing Zhang , Shaokun Yang , Zhiyun Niu , Bai Xiang . Development of a multi-level pH-responsive lipid nanoplatform for efficient co-delivery of siRNA and small-molecule drugs in tumor treatment. Chinese Chemical Letters, 2024, 35(12): 109660-. doi: 10.1016/j.cclet.2024.109660
Zhe Li , Ping-Zhao Liang , Li Xu , Fei-Yu Yang , Tian-Bing Ren , Lin Yuan , Xia Yin , Xiao-Bing Zhang . Three positive charge nonapoptotic-induced photosensitizer with excellent water solubility for tumor therapy. Chinese Chemical Letters, 2024, 35(8): 109190-. doi: 10.1016/j.cclet.2023.109190
Jingjing Zhang , Lan Ding , Vadim Popkov , Kezhen Qi . Aqueous indium metal batteries. Chinese Chemical Letters, 2025, 36(2): 110407-. doi: 10.1016/j.cclet.2024.110407
Xue Zhao , Rui Zhao , Qian Liu , Henghui Chen , Jing Wang , Yongfeng Hu , Yan Li , Qiuming Peng , John S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496
Yiwen Lin , Yijie Chen , Chunhui Deng , Nianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957
Ruizhi Yang , Xia Li , Weiping Guo , Zixuan Chen , Hongwei Ming , Zhong-Zhen Luo , Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
Zhiqing Ge , Zuxiong Pan , Shuo Yan , Baoying Zhang , Xiangyu Shen , Mozhen Wang , Xuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850
Jingyuan Yang , Xinyu Tian , Liuzhong Yuan , Yu Liu , Yue Wang , Chuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745