Citation: Zhong Zhi, Yang Xiaotong, Fu Xiao-Bin, Yao Ye-Feng, Guo Bao-Hua, Huang Yanbin, Xu Jun. Crystalline inclusion complexes formed between the drug diflunisal and block copolymers[J]. Chinese Chemical Letters, ;2017, 28(6): 1268-1275. doi: 10.1016/j.cclet.2017.04.001 shu

Crystalline inclusion complexes formed between the drug diflunisal and block copolymers

Figures(8)

  • The solid form of drugs plays a central role in optimizing the physicochemical properties of drugs, and new solid forms will provide more options to achieve the desirable pharmaceutical profiles of drugs. Recently, certain drugs have been found to form crystalline inclusion complexes (ICs) with multiple types of linear polymers, representing a new subcategory of pharmaceutical solids. In this study, we used diflunisal (DIF) as the model drug host and extended the guest of drug/polymer ICs from homopolymers to block copolymers of poly(ethylene glycol) (PEG) and poly(ε-caprolactone) (PCL). The block length in the guest copolymers showed a significant influence on the formation, thermal stability and dissolution behavior of the DIF ICs. Though the PEG block could hardly be included alone, it could indeed be included in the DIF ICs when the PCL block was long enough. The increase of the PCL block length produced IC crystals with improved thermal stability. The dissolution profiles of DIF/block copolymer ICs exhibited gradually decreased aqueous solubility and dissolution rate with the increasing PCL block length. These results demonstrate the possibility of using drug/polymer ICs to modulate the desired pharmaceutical profiles of drugs in a predictable and controllable manner.
  • 加载中
    1. [1]

      Gardner C.R., Walsh C.T., Almarsson O.. Drugs as materials:valuing physical form in drug discovery[J]. Nat. Rev. Drug Discovery, 2004,3:926-934. doi: 10.1038/nrd1550

    2. [2]

      Kawabata Y., Wada K., Nakatani M., Yamada S., Onoue S.. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system:basic approaches and practical applications[J]. Int. J. Pharm., 2011,420:1-10. doi: 10.1016/j.ijpharm.2011.08.032

    3. [3]

      Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J.. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings[J]. Adv. Drug Delivery Rev., 2001,46:3-26. doi: 10.1016/S0169-409X(00)00129-0

    4. [4]

      Lipinski C.A.. Drug-like properties and the causes of poor solubility and poor permeability[J]. J. Pharmacol. Toxicol. Methods, 2000,44:235-249. doi: 10.1016/S1056-8719(00)00107-6

    5. [5]

      Williams H.D., Trevaskis N.L., Charman S.A.. Strategies to address low drug solubility in discovery and development[J]. Pharmacol. Rev., 2013,65:315-499. doi: 10.1124/pr.112.005660

    6. [6]

      Pudipeddi M., Serajuddin A.T.M.. Trends in solubility of polymorphs[J]. J. Pharm. Sci., 2005,94:929-939. doi: 10.1002/jps.20302

    7. [7]

      Viscomi G.C., Campana M., Barbanti M.. Crystal forms of rifaximin and their effect on pharmaceutical properties[J]. CrystEngComm, 2008,10:1074-1081. doi: 10.1039/b717887e

    8. [8]

      Babu N.J., Nangia A.. Solubility advantage of amorphous drugs and pharmaceutical cocrystals[J]. Cryst. Growth Des., 2011,11:2662-2679. doi: 10.1021/cg200492w

    9. [9]

      Schultheiss N., Newman A.. Pharmaceutical cocrystals and their physicochemical properties[J]. Cryst. Growth Des., 2009,9:2950-2967. doi: 10.1021/cg900129f

    10. [10]

      Bolla G., Nangia A.. Pharmaceutical cocrystals:walking the talk[J]. Chem. Commun., 2016,52:8342-8360. doi: 10.1039/C6CC02943D

    11. [11]

      Duggirala N.K., Perry M.L., Almarsson O., Zaworotko M.J.. Pharmaceutical cocrystals:along the path to improved medicines[J]. Chem. Commun., 2016,52:640-655. doi: 10.1039/C5CC08216A

    12. [12]

      Serajuddin A.T.M.. Salt formation to improve drug solubility[J]. Adv. Drug Delivery Rev., 2007,59:603-616. doi: 10.1016/j.addr.2007.05.010

    13. [13]

      Avdeef A.. Solubility of sparingly-soluble ionizable drugs[J]. Adv. Drug Delivery Rev., 2007,59:568-590. doi: 10.1016/j.addr.2007.05.008

    14. [14]

      Huang Y., Dai W.G.. Fundamental aspects of solid dispersion technology for poorly soluble drugs[J]. Acta Pharmacol. Sin. B, 2014,4:18-25. doi: 10.1016/j.apsb.2013.11.001

    15. [15]

      Janssens S., Van den Mooter G.. Review:physical chemistry of solid dispersions[J]. J. Pharm. Pharmacol., 2009,61:1571-1586. doi: 10.1211/jpp.61.12.0001

    16. [16]

      Zhong Z., Guo C., Yang X.. Drug molecule diflunisal forms crystalline inclusion complexes with multiple types of linear polymers[J]. Cryst. Growth Des., 2016,16:1181-1186. doi: 10.1021/acs.cgd.6b00010

    17. [17]

      Zhong Z., Guo C., Chen L., Xu J., Huang Y.. Co-crystal formation between poly (ethylene glycol) and a small molecular drug griseofulvin[J]. Chem. Commun., 2014,50:6375-6378. doi: 10.1039/C4CC00159A

    18. [18]

      Sun C.C.. Novel Co-crystals between polyethylene glycols and 5-phenylpyrazolyl-1-benzene-sulfonamides[J]. PCT Pat. Appl., 20062006/024930 A1.  

    19. [19]

      Yang X., Zhong Z., Huang Y.. The effect of PEG molecular weights on the thermal stability and dissolution behaviors of griseofulvin-PEG crystalline inclusion complexes[J]. Int. J. Pharm., 2016,508:51-60. doi: 10.1016/j.ijpharm.2016.05.014

    20. [20]

      Zhong Z., Yang X., Guo B., Xu J., Huang Y.. Dissolution behavior of the crystalline inclusion complex formed by the drug diflunisal and poly (ε-caprolactone)[J]. Cryst. Growth Des., 2017,17:355-362. doi: 10.1021/acs.cgd.6b01578

    21. [21]

      Porbeni F.E., Shin I.D., Shuai X.. Morphology and dynamics of the poly (ε-caprolactone)-b-poly(L-lactide)diblock copolymer and its inclusion compound with α-cyclodextrin:A solid-state 13C NMR study[J]. J. Polym. Sci. Part B:Polym. Phys., 2005,43:2086-2096. doi: 10.1002/(ISSN)1099-0488

    22. [22]

      Lu J., Shin I.D., Nojima S., Tonelli A.E.. Formation and characterization of the inclusion compounds between poly(ε-caprolactone)-poly(ethylene oxide)-poly(ε-caprolactone)triblock copolymer and α-and γ-cyclodextrin[J]. Polymer, 2000,41:5871-5883. doi: 10.1016/S0032-3861(99)00773-9

    23. [23]

      Li J., Ni X., Zhou Z., Leong K.W.. Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly (propylene oxide)-poly(ethylene oxide)-poly (propylene oxide) triblock copolymers and α-cyclodextrin[J]. J. Am. Chem. Soc., 2003,125:1788-1795. doi: 10.1021/ja026623p

    24. [24]

      Li X., Li J., Leong K.W.. Role of intermolecular interaction between hydrophobic blocks in block-selected inclusion complexation of amphiphilic poly (ethylene oxide)-poly[J]. Polymer, 2004,45:6845-6851. doi: 10.1016/j.polymer.2004.07.038

    25. [25]

      Bracco S., Comotti A., Ferretti L., Sozzani P.. Supramolecular aggregation of block copolymers in the solid state as assisted by the selective formation of inclusion crystals[J]. J. Am. Chem. Soc., 2011,133:8982-8994. doi: 10.1021/ja201551n

    26. [26]

      Vasanthan N., Shin I.D., Huang L., Nojima S., Tonelli A.E.. Formation, characterization, and segmental mobilities of block copolymers in their urea inclusion compound crystals[J]. Macromolecules, 1997,30:3014-3025. doi: 10.1021/ma970213h

    27. [27]

      Martínez-Oha'rriz M.C., Martín C., Goñi M.M.. Polymorphism of diflunisal:Isolation and solid-state characteristics of a new crystal form[J]. J. Pharm. Sci., 1994,83:174-177. doi: 10.1002/jps.2600830212

    28. [28]

      Cross W.I., Blagden N., Davey R.J.. A whole output strategy for polymorph screening:combining crystal structure prediction, graph set analysis, and targeted crystallization experiments in the case of diflunisal[J]. Cryst. Growth Des., 2003,3:151-158. doi: 10.1021/cg025589n

    29. [29]

      Hansen L.K., Perlovich G.L., Bauer-Brandl A.. Diflunisal-hexane (4/1)[J]. Acta Crystallogr, Sect. E:Struct. Rep. Online, 2001,57:o604-o606. doi: 10.1107/S1600536801008558

    30. [30]

      Hansen L.K., Perlovich G.L., Bauer-Brandl A.. The 1:1 hydrate of diflunisal[J]. Acta Crystallogr, Sect. E:Struct. Rep. Online, 2001,57:o477-o479. doi: 10.1107/S1600536801006973

    31. [31]

      Sozzani P., Comotti A., Bracco S., Simonutti R.. Cooperation of multiple CH…π interactions to stabilize polymers in aromatic nanochannels as indicated by 2D solid state NMR[J]. Chem. Commun., 2004,7:768-769.  

    32. [32]

      Bracco S., Comotti A., Valsesia P., Beretta M., Sozzani P.. Self-assembly of 1, 4-cis-polybutadiene and an aromatic host to fabricate nanostructured crystals by CH…π interactions[J]. CrystEngComm, 2010,12:2318-2321. doi: 10.1039/c002931a

    33. [33]

      Yan X., Peng B., Hu B., Chen Q.. PEO-urea-LiTFSI ternary complex as solid polymer electrolytes[J]. Polymer, 2016,99:44-48. doi: 10.1016/j.polymer.2016.06.056

    34. [34]

      Kobr L., Zhao K., Shen Y., Michl J.. Inclusion compound based approach to arrays of artificial dipolar molecular rotors. A surface inclusion[J]. J. Am. Chem. Soc., 2012,134:10122-10131. doi: 10.1021/ja302173y

    35. [35]

      Vanderhart D.L.. Influence of molecular packing on solid-state 13C chemical shifts:the n-alkane[J]. J. Magn. Reson., 1981,44:117-125.  

    36. [36]

      Pe'rez E., Vanderhart D.L.. Solid-state 13C nuclear magnetic resonance investigation of poly(oxetanes):effect of chain conformation[J]. Polymer, 1987,28:733-738. doi: 10.1016/0032-3861(87)90221-7

    37. [37]

      Tonelli A.E.. Are the steric effects on the 13C-NMR chemical shifts of hydrocarbon polymers really long range[J]. Macromolecules, 1979,12:255-256. doi: 10.1021/ma60068a017

    38. [38]

      Bittiger H., Marchessault R.H., Niegisch W.D.. Crystal structure of poly-ε-caprolactone, Acta Crystallogr[J]. Sect. B:Struct. Crystallogr. Cryst. Chem., 1970,26:1923-1927. doi: 10.1107/S0567740870005198

    39. [39]

      Tadokoro H., Chatani Y., Yoshihara T., Tahara S., Murahashi S.. Structural studies on polyethers, [-(CH2)m-O-]n. Ⅱ. Molecular structure of polyethylene oxide[J]. Makromol. Chem., 1964,73:109-127.  

    40. [40]

      Takahash Y., Sumita I., Tadokoro H.. Structural studies of polyethers. Ⅸ. Planar zigzag modification of poly(ethylene oxide)[J]. J. Polym. Sci., Part B:Polym. Phys., 1973,11:2113-2122. doi: 10.1002/pol.1973.180111103

    41. [41]

      Tao J., Sun Y., Zhang G.G.Z., Yu L.. Solubility of small-molecule crystals in polymers:D-mannitol in PVP, indomethacin in PVP/VA, and nifedipine in PVP/VA[J]. Pharm. Res., 2009,26:855-864. doi: 10.1007/s11095-008-9784-z

    42. [42]

      Lin D., Huang Y.. A thermal analysis method to predict the complete phase diagram of drug-polymer solid dispersions[J]. Int. J. Pharm., 2010,399:109-115. doi: 10.1016/j.ijpharm.2010.08.013

  • 加载中
    1. [1]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    2. [2]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    3. [3]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    4. [4]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    5. [5]

      Kezhen QiShu-yuan LiuRuchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460

    6. [6]

      Qian WangYeping BianGagan DhawanWei ZhangAlexander E. SorochinskyAta MakaremVadim A. SoloshonokJianlin Han . FDA approved fluorine-containing drugs in 2023. Chinese Chemical Letters, 2024, 35(11): 109780-. doi: 10.1016/j.cclet.2024.109780

    7. [7]

      Hong Chen Mao-Yin Ran Long-Hua Li Xin-Tao Wu Hua Lin . [Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100397-100397. doi: 10.1016/j.cjsc.2024.100397

    8. [8]

      Yingjie WangPeng TangWenchao TuQi GaoCuizhu WangLuying TanLixin ZhaoHongye HanLiefeng MaKouharu OtsukiWeilie XiaoWenli WangJinping LiuYong LiZhajun ZhanWei LiXianli ZhouNing Li . Highly anticipated natural diterpenoids as an important source of new drugs in 2013–2023. Chinese Chemical Letters, 2025, 36(1): 109955-. doi: 10.1016/j.cclet.2024.109955

    9. [9]

      Lingjiang KouYong WangJiajia SongTaotao AiWenhu LiMohammad Yeganeh GhotbiPanya WattanapaphawongKoji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368

    10. [10]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    11. [11]

      Yunjie DangYanru FengXiao ChenChaoxing HeShujie WeiDingyang LiuJinlong QiHuaxing ZhangShaokun YangZhiyun NiuBai Xiang . Development of a multi-level pH-responsive lipid nanoplatform for efficient co-delivery of siRNA and small-molecule drugs in tumor treatment. Chinese Chemical Letters, 2024, 35(12): 109660-. doi: 10.1016/j.cclet.2024.109660

    12. [12]

      Zhe LiPing-Zhao LiangLi XuFei-Yu YangTian-Bing RenLin YuanXia YinXiao-Bing Zhang . Three positive charge nonapoptotic-induced photosensitizer with excellent water solubility for tumor therapy. Chinese Chemical Letters, 2024, 35(8): 109190-. doi: 10.1016/j.cclet.2023.109190

    13. [13]

      Jingjing ZhangLan DingVadim PopkovKezhen Qi . Aqueous indium metal batteries. Chinese Chemical Letters, 2025, 36(2): 110407-. doi: 10.1016/j.cclet.2024.110407

    14. [14]

      Xue ZhaoRui ZhaoQian LiuHenghui ChenJing WangYongfeng HuYan LiQiuming PengJohn S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496

    15. [15]

      Yiwen LinYijie ChenChunhui DengNianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813

    16. [16]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    17. [17]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    18. [18]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    19. [19]

      Zhiqing GeZuxiong PanShuo YanBaoying ZhangXiangyu ShenMozhen WangXuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850

    20. [20]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

Metrics
  • PDF Downloads(0)
  • Abstract views(908)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return