Citation: Yin Zhi-Jian, Wu Zong-Quan, Lin Feng, Qi Qiao-Yan, Xu Xiao-Na, Zhao Xin. A supramolecular bottlebrush polymer assembled on the basis of cucurbit[8]uril-encapsulation-enhanced donor-acceptor interaction[J]. Chinese Chemical Letters, ;2017, 28(6): 1167-1171. doi: 10.1016/j.cclet.2017.03.029 shu

A supramolecular bottlebrush polymer assembled on the basis of cucurbit[8]uril-encapsulation-enhanced donor-acceptor interaction

Figures(6)

  • A supramolecular bottlebrush polymer has been constructed in water through the self-assembly of a rigid electron-deficient building block and an electron-rich monomer which bears two tetraethylene glycol chains, driven by CB[8]-encapsulation-enhanced donor-acceptor interaction. The as-formed supramolecular bottlebrush polymer has been characterized by 1H NMR titration experiment, UV-vis spectroscopy, DLS and 2D 1H NMR DOSY.
  • 加载中
    1. [1]

      Yang L., Tan X., Wang Z., Zhang X.. Supramolecular polymers:historical development[J]. preparation, characterization, and functions, Chem. Rev., 2015,115:7196-7239.  

    2. [2]

      Xiao T., Feng X., Ye S.. Highly controllable ring-chain equilibrium in quadruply hydrogen bonded supramolecular polymers[J]. Macromolecules, 2012,45:9585-9594. doi: 10.1021/ma302459n

    3. [3]

      Du P., Kong J., Wang G.. Hydrogen bonded supramolecular polymers in both apolar and aqueous media:self-assembly and reversible conversion of vesicles and gels[J]. Chin. J. Chem., 2011,29:2597-2605. doi: 10.1002/cjoc.201100254

    4. [4]

      Zhan T.G., Zhou T.Y., Qi Q.Y.. The construction of supramolecular polymers through anion bridging:from frustrated hydrogen-bonding networks to well-ordered linear arrays[J]. Polym. Chem., 2015,6:7586-7593. doi: 10.1039/C5PY01284H

    5. [5]

      Tian D., Liu X.J., Chen R.Y., Zhang Y.H.. Syntheses. structures, luminescent and magnetic properties of two coordination polymers based on a flexible multidentate carboxylate ligand[J]. Chin. Chem. Lett., 2015,26:499-503. doi: 10.1016/j.cclet.2015.01.019

    6. [6]

      Su Y.S., Liu J.W., Jiang Y., Chen C.F.. Assembly of a self-complementary monomer:formation of supramolecular polymer networks and responsive gels[J]. Chem. Eur. J., 2011,17:2435-2441. doi: 10.1002/chem.201002862

    7. [7]

      Dong S., Zheng B., Wang F., Huang F.. Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs[J]. Acc. Chem. Res., 2014,47:1982-1994. doi: 10.1021/ar5000456

    8. [8]

      Qian H., Guo D.S., Liu Y.. Cucurbituril-modulated supramolecular assemblies:from cyclic oligomers to linear polymers[J]. Chem. Eur. J., 2012,18:5087-5095. doi: 10.1002/chem.v18.16

    9. [9]

      Cao T.T., Yao X.Y., Zhang J., Wang Q.C., Ma X.. A cucurbit[8] uril recognized rigid supramolecular polymer with photo-stimulated responsiveness[J]. Chin. Chem. Lett., 2015,26:867-871. doi: 10.1016/j.cclet.2015.01.032

    10. [10]

      Burattini S., Greenland B.W., Hayes W.. A supramolecular polymer based on tweezer-type π-π stacking interactions:molecular design for healability and enhanced toughness[J]. Chem. Mater., 2011,23:6-8. doi: 10.1021/cm102963k

    11. [11]

      Tian Y.K., Shi Y.G., Yang Z.S., Wang F.. Responsive supramolecular polymers based on the bis[alkynylplatinum(Ⅱ)] terpyridine molecular tweezer/arene recognition motif[J]. Angew. Chem. Int. Ed., 2014,53:6090-6094. doi: 10.1002/anie.201402192

    12. [12]

      Zhang Z., Luo Y., Chen J.. Formation of linear supramolecular polymers that is driven by C-H…π interactions in solution and in the solid state[J]. Angew. Chem. Int. Ed., 2011,50:1397-1401. doi: 10.1002/anie.v50.6

    13. [13]

      Chen L., Zhang Y.C., Wang W.K.. Conjugated radical cation dimerizationdriven generation of supramolecular architectures[J]. Chin. Chem. Lett., 2015,26:811-816. doi: 10.1016/j.cclet.2015.01.036

    14. [14]

      Zhan T.G., Zhou T.Y., Lin F.. Supramolecular radical polymers selfassembled from the stacking of radical cations of rod-like viologen di-and trimers[J]. Org. Chem. Front., 2016,3:1635-1645. doi: 10.1039/C6QO00298F

    15. [15]

      Fouquey C., Lehn J.M., Levelut A.M.. Molecular recognition directed selfassembly of supramolecular liquid crystalline polymers from complementary chiral components[J]. Adv. Mater., 1990,2:254-257. doi: 10.1002/(ISSN)1521-4095

    16. [16]

      Xu J.F., Chen Y.Z., Wu D.. Photoresponsive hydrogen-bonded supramolecular polymers based on a stiff stilbene unit[J]. Angew. Chem. Int. Ed., 2013,52:9738-9742. doi: 10.1002/anie.201303496

    17. [17]

      Qu D.H., Wang Q.C., Zhang Q.W., Ma X., Tian H.. Photoresponsive host-guest functional systems[J]. Chem. Rev., 2015,115:7543-7588. doi: 10.1021/cr5006342

    18. [18]

      Zhang M., A.Müller H.E.. Cylindrical polymer brushes[J]. J. Polym. Sci. A:Polym. Chem., 2005,43:3461-3481. doi: 10.1002/(ISSN)1099-0518

    19. [19]

      Sheiko S.S., Sumerlin B.S., Matyjaszewski K.. Cyclindrical molecular brushes:synthesis. characterization, and properties[J]. Prog. Polym. Sci., 2008,33:759-785. doi: 10.1016/j.progpolymsci.2008.05.001

    20. [20]

      Liu S., Chen Q., Sheng Y.. Unraveling the forming mechanism of hierarchical helices via self-assembly of an achiral supramolecular polymer brush[J]. Polym. Chem., 2015,6:3926-3933. doi: 10.1039/C5PY00163C

    21. [21]

      Catrouillet S., Bouteiller L., Boyron O.. Patchy supramolecular bottlebrushes formed by solution self-assembly of bis(urea)s and tris(urea)s decorated by two incompatible polymer arms[J]. Langmuir, 2016,32:8900-8908. doi: 10.1021/acs.langmuir.6b01609

    22. [22]

      Catrouillet S., Brendel J.C., Larnaudie S.. Tunable length of cyclic peptidepolymer conjugate self-assemblies in water[J]. ACS Macro Lett., 2016,5:1119-1123. doi: 10.1021/acsmacrolett.6b00586

    23. [23]

      Dingenouts N., Klyatskaya S., Rosenfeldt S., Ballauff M., Höger S.. Temperatureinduced switching between aggregated and nonaggregated states in coil-ringcoil block copolymers[J]. Macromolecules, 2009,42:5900-5902. doi: 10.1021/ma901022w

    24. [24]

      Lagona J., Mukhopadhyay P., Chakrabarti S., Isaacs L.. The cucurbit[n]uril family[J]. Angew. Chem. Int. Ed., 2005,44:4844-4870. doi: 10.1002/(ISSN)1521-3773

    25. [25]

      Liu Y., Yang H., Wang Z., Zhang X.. Cucurbit [8] uril-based supramolecular polymers[J]. Chem. Asian J., 2013,8:1626-1632. doi: 10.1002/asia.v8.8

    26. [26]

      Fan Y., Lin F., Xu X.N., Xu J.Q., Zhao X.. Construction of a rod-coilsupramolecular copolymer through CB [8] -encapsulation-enhanced donor-acceptor interaction[J]. Acta Polym. Sin, 2017:80-85.

    27. [27]

      Kim H.J., Heo J., Jeon W.S.. Selective inclusion of a hetero-guest pair in a molecular host:formation of stable charge-transfer complexes in cucurbit [8] uril[J]. Angew. Chem. Int. Ed., 2001,40:1526-1529. doi: 10.1002/(ISSN)1521-3773

  • 加载中
    1. [1]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    2. [2]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    3. [3]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    4. [4]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    5. [5]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    6. [6]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    7. [7]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    8. [8]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    9. [9]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    10. [10]

      Ran CenYan-Yan TangLi-Xia ChenZhu TaoXin Xiao . A novel supramolecular assembly based on nor-seco-cucurbit[10]uril for spermine sensing and artificial light-harvesting. Chinese Chemical Letters, 2025, 36(1): 109744-. doi: 10.1016/j.cclet.2024.109744

    11. [11]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    12. [12]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    13. [13]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    14. [14]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    15. [15]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    16. [16]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    17. [17]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    18. [18]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    19. [19]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    20. [20]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

Metrics
  • PDF Downloads(0)
  • Abstract views(1233)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return