Citation: Wu Ming-Xue, Yang Ying-Wei. Applications of covalent organic frameworks (COFs):From gas storage and separation to drug delivery[J]. Chinese Chemical Letters, ;2017, 28(6): 1135-1143. doi: 10.1016/j.cclet.2017.03.026 shu

Applications of covalent organic frameworks (COFs):From gas storage and separation to drug delivery

  • Corresponding author: Yang Ying-Wei, ywyang@jlu.edu.cn; yywfrank@gmail.com
  • Received Date: 23 February 2017
    Revised Date: 14 March 2017
    Accepted Date: 17 March 2017
    Available Online: 19 June 2017

Figures(10)

  • Covalent organic frameworks (COFs) are an emerging class of porous covalent organic structures whose backbones were composed of light elements (B, C, N, O, Si) and linked by robust covalent bonds to endow such material with desirable properties, i.e., inherent porosity, well-defined pore aperture, ordered channel structure, large surface area, high stability, and multi-dimension. As expected, the above-mentioned properties of COFs broaden the applications of this class of materials in various fields such as gas storage and separation, catalysis, optoelectronics, sensing, small molecules adsorption, and drug delivery. In this review, we outlined the synthesis of COFs and highlighted their applications ranging from the initial gas storage and separation to drug delivery.
  • 加载中
    1. [1]

      Dawson R., Cooper A.I., Adams D.J.. Nanoporous organic polymer networks[J]. Prog. Polym. Sci., 2012,37:530-563. doi: 10.1016/j.progpolymsci.2011.09.002

    2. [2]

      Zou X., Ren H., Zhu G.. Topology-directed design of porous organic frameworks and their advanced applications[J]. Chem. Commun., 2013,49:3925-3936. doi: 10.1039/c3cc00039g

    3. [3]

      Guillerm V., Weselinski L.J., Alkordi M.. Porous organic polymers with anchored aldehydes:a new platform for post-synthetic amine functionalization en route for enhanced CO2 adsorption properties[J]. Chem. Commun., 2014,50:1937-1940. doi: 10.1039/c3cc48228f

    4. [4]

      Ben T., Ren H., Ma S.. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area[J]. Angew. Chem. Int. Ed., 2009,48:9457-9460. doi: 10.1002/anie.200904637

    5. [5]

      Ben T., Qiu S.. Porous aromatic frameworks:Synthesis[J]. structure and functions, CrystEngComm, 2013,15:17-26.  

    6. [6]

      Wu M., Chen G., Liu P.. Preparation of porous aromatic framework/ionic liquid hybrid composite coated solid-phase microextraction fibers and their application in the determination of organochlorine pesticides combined with GC-ECD detection[J]. Analyst, 2016,141:243-250. doi: 10.1039/C5AN01372K

    7. [7]

      Zhang J., Jin J., Cooney R.. Fluoride-mediated polycondensation for the synthesis of polymers of intrinsic microporosity[J]. Polymer, 2015,76:168-172. doi: 10.1016/j.polymer.2015.08.066

    8. [8]

      Becker D., Konnertz N., Böhning M.. Light-switchable polymers of intrinsic microporosity[J]. Chem. Mater., 2016,28:8523-8529. doi: 10.1021/acs.chemmater.6b02619

    9. [9]

      Gu C., Huang N., Gao J.. Controlled synthesis of conjugated microporous polymer films:versatile platforms for highly sensitive and label-free chemoand biosensing[J]. Angew. Chem. Int. Ed., 2014,53:4850-4855. doi: 10.1002/anie.201402141

    10. [10]

      Ratvijitvech T., Dawson R., Laybourn A.. Post-synthetic modification of conjugated microporous polymers[J]. Polymer, 2014,55:321-325. doi: 10.1016/j.polymer.2013.06.004

    11. [11]

      Gao H., Ding L., Li W.. Hyper-cross-linked organic microporous polymers based on alternating copolymerization of bismaleimide[J]. ACS Macro. Lett., 2016,5:377-381. doi: 10.1021/acsmacrolett.6b00015

    12. [12]

      Huang N., Wang P., Jiang D.. Covalent organic frameworks:a materials platform for structural and functional designs[J]. Nat. Rev. Mater., 2016,116068. doi: 10.1038/natrevmats.2016.68

    13. [13]

      Baldwin L.A., Crowe J.W., Pyles D.A.. Metalation of a mesoporous threedimensional covalent organic framework[J]. J. Am. Chem. Soc., 2016,138:15134-15137. doi: 10.1021/jacs.6b10316

    14. [14]

      Waller P.J., Gandara F., Yaghi O.M.. Chemistry of covalent organic frameworks[J]. Acc. Chem. Res., 2015,48:3053-3063. doi: 10.1021/acs.accounts.5b00369

    15. [15]

      Smith B.J., Hwang N., Chavez A.D.. Growth rates and water stability of 2D boronate ester covalent organic frameworks[J]. Chem. Commun., 2015,51:7532-7535. doi: 10.1039/C5CC00379B

    16. [16]

      Huang N., Ding X., Kim J.. A photoresponsive smart covalent organic framework[J]. Angew. Chem. Int. Ed., 2015,54:8704-8707. doi: 10.1002/anie.201503902

    17. [17]

      Chen X., Addicoat M., Jin E.. Designed synthesis of double-stage twodimensional covalent organic frameworks[J]. Sci. Rep., 2015,514650. doi: 10.1038/srep14650

    18. [18]

      Das G., Balaji Shinde D., Kandambeth S.. Mechanosynthesis of imine beta-ketoenamine, and hydrogen-bonded imine-linked covalent organic frameworks using liquid-assisted grinding[J]. Chem. Commun., 2014,50:12615-12618.

    19. [19]

      Pramudya Y., Mendoza-Cortes J.L.. Design principles for high H2 storage using chelation of abundant transition metals in covalent organic frameworks for 0-700 bar at 298 K[J]. J. Am. Chem. Soc., 2016,138:15204-15213. doi: 10.1021/jacs.6b08803

    20. [20]

      Ma H., Ren H., Meng S.. A 3D microporous covalent organic framework with exceedingly high C3H8/CH4 and C2 hydrocarbon/CH4 selectivity[J]. Chem. Commun., 2013,49:9773-9775. doi: 10.1039/c3cc45217d

    21. [21]

      Wang X., Han X., Zhang J.. Homochiral 2D porous covalent organic frameworks for heterogeneous asymmetric catalysis[J]. J. Am. Chem. Soc., 2016,138:12332-12335. doi: 10.1021/jacs.6b07714

    22. [22]

      Li H., Pan Q., Ma Y.. Three-dimensional covalentorganic frameworks with dual linkages for bifunctional cascade catalysis[J]. J. Am. Chem. Soc., 2016,138:14783-14788. doi: 10.1021/jacs.6b09563

    23. [23]

      Xu H., Tao S., Jiang D.. Proton conduction in crystalline and porous covalent organic frameworks[J]. Nat. Mater., 2016,15:722-726. doi: 10.1038/nmat4611

    24. [24]

      Crowe J.W., Baldwin L.A., McGrier P.L.. Luminescent covalent organic frameworks containing a homogeneous and heterogeneous distribution of dehydrobenzoannulene vertex units[J]. J. Am. Chem. Soc., 2016,138:10120-10123. doi: 10.1021/jacs.6b06546

    25. [25]

      Yang D.H., Yao Z.Q., Wu D.. Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries[J]. J. Mater. Chem. A, 2016,4:18621-18627. doi: 10.1039/C6TA07606H

    26. [26]

      Guo L., Zeng X., Cao D.. Porous covalent organic polymers as luminescent probes for highly selective sensing of Fe3+ and chloroform:functional group effects[J]. Sens. Actuators B:Chem., 2016,226:273-278. doi: 10.1016/j.snb.2015.11.108

    27. [27]

      Ding S.Y., Dong M., Wang Y.W.. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(Ⅱ)[J]. J. Am. Chem. Soc., 2016,138:3031-3037. doi: 10.1021/jacs.5b10754

    28. [28]

      Wang P., Kang M., Sun S.. Imine-linked covalent organic framework on surface for biosensor[J]. Chin. J. Chem., 2014,32:838-843. doi: 10.1002/cjoc.201400260

    29. [29]

      Gao J., Jiang D.. Covalent organic frameworks with spatially confined guest molecules in nanochannels and their impacts on crystalline structures[J]. Chem. Commun., 2016,52:1498-1500. doi: 10.1039/C5CC09225F

    30. [30]

      Lohse M.S., Stassin T., Naudin G.. Sequential pore wall modification in a covalent organic framework for application in lactic acid adsorption[J]. Chem. Mater., 2016,28:626-631. doi: 10.1021/acs.chemmater.5b04388

    31. [31]

      Niu X., Ding S., Wang W.. Separation of small organic molecules using covalent organic frameworks-LZU1 as stationary phase by open-tubular capillary electrochromatography[J]. J. Chromatogr. A, 2016,1436:109-117. doi: 10.1016/j.chroma.2016.01.066

    32. [32]

      Plas J., Ivasenko O., Martsinovich N.. Nanopatterningof a covalentorganic framework host-guest system[J]. Chem. Commun., 2016,52:68-71. doi: 10.1039/C5CC07557B

    33. [33]

      Vyas V.S., Vishwakarma M., Moudrakovski I.. Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery[J]. Adv. Mater., 2016,28:8749-8754. doi: 10.1002/adma.201603006

    34. [34]

      Bai L., Phua S.Z., Lim W.Q.. Nanoscale covalent organic frameworks as smart carriers for drug delivery[J]. Chem. Commun., 2016,52:4128-4131. doi: 10.1039/C6CC00853D

    35. [35]

      Feng X., Ding X., Jiang D.. Covalent organic frameworks[J]. Chem. Soc. Rev., 2012,41:6010-6022. doi: 10.1039/c2cs35157a

    36. [36]

      Ding S.Y., Wang W.. Covalent organic frameworks (COFs):from design to applications[J]. Chem. Soc. Rev., 2013,42:548-568. doi: 10.1039/C2CS35072F

    37. [37]

      Côte A.P., Benin A.I., Ockwig N.W.. Porous crystalline. covalent organic frameworks[J]. Science, 2005,310:1166-1170. doi: 10.1126/science.1120411

    38. [38]

      El-Kaderi H.M., Hunt J.R., Mendoza-Cortes J.L.. Designed synthesis of 3D covalent organic frameworks[J]. Science, 2007,316:268-272. doi: 10.1126/science.1139915

    39. [39]

      Hunt J.R., Doonan C.J., LeVangie J.D.. Reticular synthesis of covalent organic borosilicate frameworks[J]. J. Am. Chem. Soc., 2008,130:11872-11873. doi: 10.1021/ja805064f

    40. [40]

      Côte A.P., El-Kaderi H.M., Furukawa H.. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks[J]. J. Am. Chem. Soc., 2007,129:12914-12915. doi: 10.1021/ja0751781

    41. [41]

      Spitler E.L., Koo B.T., Novotney J.L.. A 2D covalent organic framework with 4.7nm pores and insight into its interlayer stacking[J]. J. Am. Chem. Soc., 2011,133:19416-18421. doi: 10.1021/ja206242v

    42. [42]

      Liu C., Yu Y., Zhang W.. Room-temperature synthesis of covalent organic frameworks with a boronic ester linkage at the liquid/solid interface[J]. Chemistry, 2016,22:18412-18418. doi: 10.1002/chem.v22.51

    43. [43]

      Zhang J., Wang L., Li N.. A novel azobenzene covalent organic framework[J]. CrystEngComm, 2014,16:6547-6551. doi: 10.1039/C4CE00369A

    44. [44]

      Uribe-Romo F.J., Hunt J.R., Furukawa H.. A crystalline imine-linked 3D porous covalent organic framework[J]. J. Am. Chem. Soc., 2009,131:4570-4571. doi: 10.1021/ja8096256

    45. [45]

      Dong W.L., Li S.Y., Yue J.Y.. Fabrication of bilayer tetrathiafulvalene integrated surface covalent organic frameworks[J]. Phys. Chem. Chem. Phys., 2016,18:17356-17359. doi: 10.1039/C6CP01804A

    46. [46]

      Zhao X., Fan Y., Wen Q.. A case study on the influence of substituents on interlayer stacking of 2D covalent organic frameworks[J]. Chemistry, 2017. doi: 10.1002/chem.201700915

    47. [47]

      Uribe-Romo F.J., Doonan C.J., Furukawa H.. Crystalline covalent organic frameworks with hydrazone linkages[J]. J. Am. Chem. Soc., 2011,133:11478-11481. doi: 10.1021/ja204728y

    48. [48]

      Stegbauer L., Schwinghammer K., Lotsch B.V.. A hydrazone-based covalent organic framework for photocatalytic hydrogen production[J]. Chem. Sci., 2014,5:2789-2793. doi: 10.1039/C4SC00016A

    49. [49]

      Kuhn P., Antonietti M., Thomas A.. Porous. covalent triazine-based frameworks prepared by ionothermal synthesis[J]. Angew. Chem. Int. Ed., 2008,47:3450-3453. doi: 10.1002/(ISSN)1521-3773

    50. [50]

      Dalapati S., Jin S., Gao J.. An azine-linked covalent organic framework[J]. J. Am. Chem. Soc., 2013,135:17310-17313. doi: 10.1021/ja4103293

    51. [51]

      Li Z.J., Ding S.Y., Xue H.D.. Synthesis of -C=N linked covalent organic frameworks via the direct condensation of acetals and amines[J]. Chem. Commun., 2016,52:7217-7220. doi: 10.1039/C6CC00947F

    52. [52]

      Fang Q., Zhuang Z., Gu S.. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks[J]. Nat. Commun., 2014,54503.  

    53. [53]

      Zhang W., Jiang P., Wang Y.. Bottom-up approach to engineer two covalent porphyrinic frameworks as effective catalysts for selective oxidation[J]. Catal. Sci. Technol., 2015,5:101-104. doi: 10.1039/C4CY00969J

    54. [54]

      Nath B., Li W.H., Huang J.H.. A new azodioxy-linked porphyrin-based semiconductive covalent organic framework with I2 doping-enhanced photoconductivity[J]. CrystEngComm, 2016,18:4259-4263. doi: 10.1039/C6CE00168H

    55. [55]

      Du Y., Yang H.S., Whiteley J.M.. Ionic covalent organic frameworks with spiroborate linkage[J]. Angew. Chem. Int. Ed., 2016,55:1737-1741. doi: 10.1002/anie.201509014

    56. [56]

      Zeng Y., Zou R., Luo Z.. Covalent organic frameworks formed with two types of covalent bonds based on orthogonal reactions[J]. J. Am. Chem. Soc., 2015,137:1020-1023. doi: 10.1021/ja510926w

    57. [57]

      Wang H., Ding H., Meng X.. Two-dimensional porphyrin-and phthalocyanine-based covalent organic frameworks[J]. Chin. Chem. Lett., 2016,27:1376-1382. doi: 10.1016/j.cclet.2016.05.020

    58. [58]

      Xia L., Liu Q.. Lithium doping on covalent organic framework-320 for enhancing hydrogen storage at ambient temperature[J]. J. Solid State Chem., 2016,244:1-5.  

    59. [59]

      Wei H., Chai S., Hu N.. The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity[J]. Chem. Commun., 2015,51:12178-12181. doi: 10.1039/C5CC04680G

    60. [60]

      Yang Z., Cao D.. Effect of Li doping on diffusion and separation of hydrogen and methane in covalent organic frameworks[J]. J. Phys. Chem. C, 2012,116:12591-12598. doi: 10.1021/jp302175d

    61. [61]

      Guo J.H., Zhang H., Liu Z.P.. Multiscale study of hydrogen adsorption diffusion[J]. and desorption on Li-doped phthalocyanine covalent organic frameworks, J. Phys. Chem. C, 2012,116:15908-15917.  

    62. [62]

      Furukawa H.Y., Yaghi O.M.. Storage of hydrogen[J]. methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications, J. Am. Chem. Soc., 2009,131:8875-8883.

    63. [63]

      Lu H., Wang C., Chen J.. A novel 3D covalent organic framework membrane grown on a porous alpha-Al2O3 substrate under solvothermal conditions[J]. Chem. Commun., 2015,51:15562-15565. doi: 10.1039/C5CC06742A

    64. [64]

      Shan M., Seoane B., Rozhko E.. Azine-linked covalent organic framework (COF)-based mixed-matrix membranes for CO2/CH4 separation[J]. Chemistry, 2016,22:14467-14470. doi: 10.1002/chem.201602999

    65. [65]

      Yin Z.J., Xu S.Q., Zhan T.G.. Ultrahigh volatile iodine uptake by hollow microspheres formed from a heteropore covalent organic framework[J]. Chem. Commun, 2017. doi: 10.1039/c7cc01045a

    66. [66]

      Fang Q., Gu S., Zheng J.. 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis[J]. Angew. Chem. Int. Ed., 2014,53:2878-2882. doi: 10.1002/anie.v53.11

    67. [67]

      Lin S., Diercks C.S., Zhang Y.B.. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water[J]. Science, 2015,349:1208-1213. doi: 10.1126/science.aac8343

    68. [68]

      Ding S.Y., Gao J., Wang Q.. Construction of covalentorganic framework for catalysis:Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction[J]. J. Am. Chem. Soc., 2011,133:19816-19822. doi: 10.1021/ja206846p

    69. [69]

      Xu H.S., Ding S.Y., An W.K.. Constructing crystalline covalent organic frameworks from chiral building blocks[J]. J. Am. Chem. Soc., 2016,138:11489-11492. doi: 10.1021/jacs.6b07516

    70. [70]

      Yang L., Wei D.C.. Semiconducting covalent organic frameworks:a type of twodimensional conducting polymers[J]. Chin. Chem. Lett., 2016,27:1395-1404. doi: 10.1016/j.cclet.2016.07.010

    71. [71]

      Ma L., Wang S., Feng X.. Recent advances of covalent organic frameworks in electronic and optical applications[J]. Chin. Chem. Lett., 2016,27:1383-1394. doi: 10.1016/j.cclet.2016.06.046

    72. [72]

      Ding H., Li Y., Hu H.. A tetrathiafulvalene-based electroactive covalent organic framework[J]. Chem. Eur. J., 2014,20:14614-14618. doi: 10.1002/chem.v20.45

    73. [73]

      Wan S., Gándara F., Asano A.. Covalent organic frameworks with high charge carrier mobility[J]. Chem. Mater., 2011,23:4094-4097. doi: 10.1021/cm201140r

    74. [74]

      Wan S., Guo J., Kim J.. A belt-shaped blue luminescent[J]. and semiconducting covalent organic framework, Angew. Chem. Int. Ed., 2008,47:8826-8830.  

    75. [75]

      Ding X., Guo J., Feng X.. Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity[J]. Angew. Chem. Int. Ed., 2011,50:1289-1293. doi: 10.1002/anie.v50.6

    76. [76]

      Koo B.T., Berard P.G., Clancy P.. A kinetic monte carlo study of fullerene adsorptionwithin a Pc-PBBA covalent organic framework and implications for electron transport[J]. J. Chem. Theory Comput., 2015,11:1172-1180. doi: 10.1021/ct501044u

    77. [77]

      Shinde D.B., Aiyappa H.B., Bhadra M.. A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte[J]. J. Mater. Chem. A, 2016,4:2682-2690. doi: 10.1039/C5TA10521H

    78. [78]

      Ma H., Liu B., Li B.. Cationic covalent organic frameworks:a simple platform of anionic exchange for porosity tuning and proton conduction[J]. J. Am. Chem. Soc., 2016,138:5897-5903. doi: 10.1021/jacs.5b13490

    79. [79]

      DeBlase C.R., Burgos K.H., Silberstein K.E.. Rapid and efficient redox processes within 2D covalent organic framework thin films[J]. ACS Nano, 2015,9:3173-3183.  

    80. [80]

      DeBlase C.R., Silberstein K.E., Truong T.T.. β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage[J]. J. Am. Chem. Soc., 2013,135:16821-16824. doi: 10.1021/ja409421d

    81. [81]

      Mulzer C.R., Shen L., Bisbey R.P.. Superior charge storage and power density of a conducting polymer-modified covalent organic framework[J]. ACS Cent. Sci., 2016,2:667-673. doi: 10.1021/acscentsci.6b00220

    82. [82]

      Liao H., Ding H., Li B.. Covalent-organic frameworks:potential host materials for sulfur impregnation in lithium-sulfur batteries[J]. J. Mater. Chem. A, 2014,2:8854-8858. doi: 10.1039/C4TA00523F

    83. [83]

      Liao H., Wang H., Ding H.. A 2D porous porphyrin-based covalent organic framework for sulfur storage in lithium-sulfur batteries[J]. J. Mater. Chem. A, 2016,4:7416-7421. doi: 10.1039/C6TA00483K

    84. [84]

      Li Z., Zhang Y., Xia H.. A robust and luminescent covalent organic framework as a highly sensitive and selective sensor for the detection of Cu2+ ions[J]. Chem. Commun., 2016,52:6613-6616. doi: 10.1039/C6CC01476C

    85. [85]

      Lin G., Ding H., Yuan D.. A pyrene-based[J]. fluorescent three-dimensional covalent organic framework, J. Am. Chem. Soc., 2016,138:3302-3305.  

    86. [86]

      Li J., Yang X., Bai C.. A novel benzimidazole-functionalized 2D COF material:synthesis and application as a selective solid-phase extractant for separation of uranium[J]. J. Colloid Interface Sci., 2015,437:211-218. doi: 10.1016/j.jcis.2014.09.046

    87. [87]

      Zhang S., Zhao X., Li B.. Stereoscopic 2D super-microporous phosphazene-based covalent organic framework:design[J]. synthesis and selective sorption towards uranium at high acidic condition, J. Hazard. Mater., 2016,314:95-104.  

    88. [88]

      Zhang C., Li G., Zhang Z.. A hydrazone covalent organic polymer based microsolid phase extraction for online analysis of trace Sudan dyes in food samples[J]. J. Chromatogr. A, 2015,1419:1-9. doi: 10.1016/j.chroma.2015.09.059

    89. [89]

      Wu M., Chen G., Liu P.. Polydopamine-based immobilization of a hydrazone covalent organic framework for headspace solid-phase microextraction of pyrethroids in vegetables and fruits[J]. J. Chromatogr. A, 2016,1456:34-41. doi: 10.1016/j.chroma.2016.05.100

    90. [90]

      Wu M., Chen G., Ma J.. Fabrication of cross-linked hydrazone covalent organic frameworks by click chemistry and application to solid phase microextraction[J]. Talanta, 2016,161:350-358. doi: 10.1016/j.talanta.2016.08.041

    91. [91]

      Yang C.X., Liu C., Cao Y.M.. Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation[J]. Chem. Commun., 2015,51:12254-12257. doi: 10.1039/C5CC03413B

    92. [92]

      Fang Q., Wang J., Gu S.. 3D porous crystalline polyimide covalent organic frameworks for drug delivery[J]. J. Am. Chem. Soc., 2015,137:8352-8355. doi: 10.1021/jacs.5b04147

    93. [93]

      Liu C., Zhang W., Zeng Q.. A photoresponsive surface covalent organic framework:surface-confined synthesis[J]. isomerization, and controlled guest capture and release, Chemistry, 2016,22:6768-6773.  

    94. [94]

      Rengaraj A., Puthiaraj P., Haldorai Y.. Porous covalent triazine polymer as a potential nanocargo for cancer therapy and imaging[J]. ACS Appl. Mater. Interface, 2016,8:8947-8955. doi: 10.1021/acsami.6b00284

  • 加载中
    1. [1]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    2. [2]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    3. [3]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    4. [4]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    5. [5]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    6. [6]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    7. [7]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    8. [8]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    9. [9]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    10. [10]

      Makhloufi ZoulikhaZhongjian ChenJun WuWei He . Approved delivery strategies for biopharmaceuticals. Chinese Chemical Letters, 2025, 36(2): 110225-. doi: 10.1016/j.cclet.2024.110225

    11. [11]

      Jing ZhangCharles WangYaoyao ZhangHaining XiaYujuan WangKun MaJunfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420

    12. [12]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    13. [13]

      Jiaqi HuangRenjiang KongYanmei LiNi YanYeyang WuZiwen QiuZhenming LuXiaona RaoShiying LiHong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254

    14. [14]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    15. [15]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    16. [16]

      Yong-Dan ZhaoYidan WangRongrong WangLina ChenHengtong ZuoXi WangJihong QiangGeng WangQingxia LiCanqi PingShuqiu ZhangHao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929

    17. [17]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    18. [18]

      Yuanzheng WangChen ZhangShuyan HanXiaoli KongChangyun QuanJun WuWei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578

    19. [19]

      Yinglan YuSajid HussainJianping QiLei LuoXuemei Zhang . Mechanisms and applications: Cargos transport to basolateral membranes in polarized epithelial cells. Chinese Chemical Letters, 2024, 35(12): 109673-. doi: 10.1016/j.cclet.2024.109673

    20. [20]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

Metrics
  • PDF Downloads(4)
  • Abstract views(866)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return