Citation: Wang Qi, Cheng Ming, Jiang Ju-Li, Wang Le-Yong. Modulating the properties of quadruple hydrogen bonded supramolecular polymers by photo-cross-linking between the coumarin moieties[J]. Chinese Chemical Letters, ;2017, 28(4): 793-797. doi: 10.1016/j.cclet.2017.02.008 shu

Modulating the properties of quadruple hydrogen bonded supramolecular polymers by photo-cross-linking between the coumarin moieties

  • Corresponding author: Wang Qi, iamqwang@njupt.edu.cn Jiang Ju-Li, jjl@nju.edu.cn
  • Received Date: 12 December 2016
    Revised Date: 31 January 2017
    Accepted Date: 13 February 2017
    Available Online: 16 April 2017

Figures(7)

  • Novel linear supramolecular polymers were successfully constructed by self-assemblies of coumarin-bridged bifunctional UPy derivative.Benefitting from the photodimerization ability of the coumarin moieties, the linear supramolecular polymers could form the large three-dimensional polymer networks upon UV light irradiation via photo-cross-linking, which provides a viable and alternative procedure to modulate the properties of supramolecular polymers.
  • 加载中
    1. [1]

      (a)C. Schmuck, W. Wienand, Self-complementary quadruple hydrogen-bonding motifs as a functional principle: from dimeric supramolecules to supramolecular polymers, Angew. Chem. Int. Ed. 40(2001)4363-4369;
      (b)S. L. Li, T. Xiao, C. Lin, L. Wang, Advanced supramolecular polymers constructed by orthogonal self-assembly, Chem. Soc. Rev. 41(2012)5950-5968;
      (c)T. Aida, E. W. Meijer, S. I. Stupp, Functional supramolecular polymers, Science 335(2012)813-817;
      (d)Q. Wang, Y. Chen, Y. Liu, Supramolecular ternary polymer mediated by cucurbituril and cyclodextrin, Polym. Chem. 4(2013)4192-4198;
      (e)X. Y. Hu, T. Xiao, C. Lin, F. Huang, L. Wang, Dynamic supramolecular complexes constructed by orthogonal self-assembly, Acc. Chem. Res. 47(2014) 2041-2051;
      (f)X. Ma, H. Tian, Stimuli-responsive supramolecular polymers in aqueous solution, Acc. Chem. Res. 47(2014)1971-1981;
      (g)L. Yang, X. Tan, Z. Wang, X. Zhang, Supramolecular polymers: historical development, preparation, characterization, and functions, Chem. Rev. 115 (2015)7196-7239;
      (h)P. Wei, X. Yan, F. Huang, Supramolecular polymers constructed by orthogonal self-assembly based on host-guest and metal-ligand interactions, Chem. Soc. Rev. 44(2015)815-832;
      (i)H. Q. Peng, C. L. Sun, L. Y. Niu, et al. , Supramolecular polymeric fluorescent nanoparticles based on quadruple hydrogen bonds, Adv. Funct. Mater. 26 (2016)5483-5489.

    2. [2]

      (a)T. F. A. D. Greef, M. M. J. Smulders, M. Wolffs, et al. , Supramolecular polymerization, Chem. Rev. 109(2009)5687-5754;
      (b)B. Zheng, F. Wang, S. Dong, F. Huang, Supramolecular polymers constructed by crown ether-based molecular recognition, Chem. Soc. Rev. 41(2012)1621-1636;
      (c)Y. Liu, Z. Huang, X. Tan, Z. Wang, X. Zhang, Cucurbit[8] uril-based supramolecular polymers: promoting supramolecular polymerization by metal-coordination, Chem. Commun. 49(2013)5766-5768;
      (d)C. Li, Pillararene-based supramolecular polymers: from molecular recognition to polymeric aggregates, Chem. Commun. 50(2014)12420-12433.

    3. [3]

      Sijbesma R.P., Beijer F.H., Brunsveld L.. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding[J]. Science, 1997,278:1601-1604. doi: 10.1126/science.278.5343.1601

    4. [4]

      Hu X.Y., Zhang P., Wu X.. Pillar[5] arene-based supramolecular polypseudorotaxanes constructed from quadruple hydrogen bonding[J]. Polym.Chem., 2012,3:3060-3063. doi: 10.1039/c2py20285a

    5. [5]

      Yan X., Jiang B., Cook T.R.. Dendronized organoplatinum(Ⅱ)metallacyclic polymers constructed by hierarchical coordination-driven self-assembly and hydrogen-bonding interfaces[J]. J.Am.Chem.Soc., 2013,135:16813-16816. doi: 10.1021/ja4092193

    6. [6]

      (a)R. J. Wojtecki, M. A. Meador, S. J. Rowan, Using the dynamic bond to access macroscopically responsive structurally dynamic polymers, Nat. Mater. 10 (2011)14-27;
      (b)Y. C. Zhang, L. Chen, H. Wang, et al. , Pleated polymeric foldamers driven by donor-acceptor interaction and conjugated radical cation dimerization, Chin. Chem. Lett. 27(2016)817-821;
      (c)J. F. Xu, Y. Z. Chen, L. Z. Wu, C. H. Tung, Q. Z. Yang, Dynamic covalent bond based on reversible photo[4+4] cycloaddition of anthracene for construction of double-dynamic polymers, Org. Lett. 15(2013)6148-6151;
      (d)F. Wang, C. Han, C. He, et al. , Self-sorting organization of two heteroditopic monomers to supramolecular alternating copolymers, J. Am. Chem. Soc. 130 (2008)11254-11255;
      (e)X. Ji, Y. Yao, J. Li, X. Yan, F. Huang, A supramolecular cross-linked conjugated polymer network for multiple fluorescent sensing, J. Am. Chem. Soc. 135(2013) 74-77;
      (f)X. Yan, D. Xu, X. Chi, et al. , A multiresponsive, shape-persistent, and elastic supramolecular polymer network gel constructed by orthogonal self-assembly, Adv. Mater. 24(2012)362-369.

    7. [7]

      (a)M. M. Russew, S. Hecht, Photoswitches: from molecules to materials, Adv. Mater. 22(2010)3348-3360;
      (b)F. Ercole, T. P. Davis, R. A. Evans, Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond, Polym. Chem. 1(2010)37-54.

    8. [8]

      (a)M. Takeshita, M. Hayashi, S. Kadota, K. H. Mohammed, T. Yamato, Photoreversible supramolecular polymer formation, Chem. Commun. (2005)761-763;
      (b)S. L. Li, T. Xiao, W. Xia, et al. , New light on the ring-chain equilibrium of a hydrogen-bonded supramolecular polymer based on a photochromic dithienylethene unit and its energy-transfer properties as a storage material, Chem. Eur. J. 17(2011)10716-10723;
      (c)J. F. Xu, Y. Z. Chen, D. Wu, et al. , Photoresponsive hydrogen-bonded supramolecular polymers based on a stiff stilbene unit, Angew. Chem. Int. Ed. 52(2013)9738-9742;
      (d)X. Liu, J. F. Xu, Z. Wang, X. Zhang, Photo-responsive supramolecular polymers synthesized by olefin metathesis polymerization from supramonomers, Polym. Chem. 7(2016)2333-2336.

    9. [9]

      (a)N. K. Mal, M. Fujiwara, Y. Tanaka, Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica, Nature 421(2003) 350-353;
      (b)Q. Zhang, D. H. Qu, X. Ma, H. Tian, Sol-gel conversion based on photoswitching between noncovalently and covalently linked netlike supramolecular polymers, Chem. Commun. 49(2013)9800-9802;
      (c)M. Cheng, C. Yao, Y. Cao, et al. , 4-Methylcoumarin-bridged fluorescent responsive cryptand: from[2+2] photodimerization to supramolecular polymer, Chem. Commun. 52(2016)8715-8718.

    10. [10]

      (a) H. Wang, Z.J. Zhang, H.Y. Zhang, Y. Liu, Synthesis of a bistable [3]rotaxane and its pH-controlled intramolecular charge-transfer behavior, Chin. Chem.Lett. 24 (2013) 563-567;
      (b) S.J. Zhang, Q. Wang, M. Cheng, et al., A switchable bistable [2]rotaxane based on phosphine oxide functional group, Chin. Chem. Lett. 26 (2015) 885-888.

    11. [11]

      Zhang Q., Qu D.H., Wu J.. A dual-modality photoswitchable supramolecular polymer[J]. Langmuir, 2013,29:5345-5350. doi: 10.1021/la4012444

    12. [12]

      Celiz A.D., Scherman O.A. Controlled ring-opening polymerization initiated via self-complementary hydrogen-bonding units[J]. Macromolecules, 2008,41:4115-4119. doi: 10.1021/ma702699t

  • 加载中
    1. [1]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    2. [2]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    3. [3]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    4. [4]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    5. [5]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    6. [6]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    7. [7]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    8. [8]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    9. [9]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    10. [10]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    11. [11]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    12. [12]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    13. [13]

      Guoxing LiuYixin LiChangming TianYongmei XiaoLijie LiuZhanqi CaoSong JiangXin ZhengCaoyuan NiuYun-Lai RenLiangru YangXianfu ZhengYong Chen . Highly reversible photomodulated hydrosoluble stiff-stilbene supramolecular luminophor induced by cucurbituril. Chinese Chemical Letters, 2024, 35(8): 109403-. doi: 10.1016/j.cclet.2023.109403

    14. [14]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    15. [15]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    16. [16]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    17. [17]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    18. [18]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    19. [19]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    20. [20]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

Metrics
  • PDF Downloads(1)
  • Abstract views(593)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return