Citation: Bagherzadeh Mojtaba, Mousavi Narges-alsadat, Amini Mojtaba, Gautam Sanjeev, Pal Singh Jitendra, Chae Keun Hwa. Cu2O nanocrystals with various morphology: Synthesis, characterization and catalytic properties[J]. Chinese Chemical Letters, ;2017, 28(5): 1125-1130. doi: 10.1016/j.cclet.2017.01.022 shu

Cu2O nanocrystals with various morphology: Synthesis, characterization and catalytic properties

Figures(9)

  • Cu2O nanocubes, octahedra, spheres and truncated rhombic dodecahedral were prepared and their structural, morphological, and electronic properties were investigated by X-ray diffraction analysis, X-ray absorption near edge structure, scanning electron microscope and transmission electron microscope and X-ray absorption near edge structure. Cu2O nanocrystals were successfully employed to catalyze the 1, 3-dipolar cycloaddition reaction for the synthesis of 1, 4-disubstituted triazoles. Cu2O nanocubes and octahedral showed the superior catalytic performance in the cycloaddition reaction. These results reveal that crystal-plane engineering of oxide catalysts is a useful strategy for developing efficient catalysts for organic reaction.
  • 加载中
    1. [1]

      C.H. Kuo, M.H. Huang. Facile synthesis of Cu2O nanocrystals with systematic shape evolution from cubic to octahedral structures[J]. J. Phys. Chem.C, 2008,112:18355-18360. doi: 10.1021/jp8060027

    2. [2]

      Z. Geng, Y. Zhang, X. Yuan. Incorporation of Cu2O nanocrystals into TiO2 photonic crystal for enhanced UV? visible light driven photocatalysis[J]. J. Alloys Compd., 2015,644:734-741. doi: 10.1016/j.jallcom.2015.05.075

    3. [3]

      X.D. Liang, L. Gao, S.W. Yang, J. Sun. Facile synthesis and shape evolution of single-crystal cuprous oxide[J]. Adv. Mater., 2009,21:2068-2071. doi: 10.1002/adma.v21:20

    4. [4]

      K.X. Yao, X.M. Yin, T.H. Wang, H.C. Zeng. Synthesis self-assembly, disassembly, and reassembly of two types of Cu2O Nanocrystals unifaceted with {001} or {110} planes[J]. J. Am. Chem. Soc., 2010,132:6131-6144. doi: 10.1021/ja100151f

    5. [5]

      X. Lan, J.Y. Zhang, H. Gao, T.M. Wang. Morphology-controlled hydrothermal synthesis and growth mechanism of microcrystal Cu2O[J]. Cryst. Eng. Commun., 2011,13:633-636. doi: 10.1039/C0CE00232A

    6. [6]

      T.D. Golden, M.G. Shumsky, Y.C. Zhou. Electrochemical deposition of copper(Ⅰ) oxide films[J]. Chem. Mater., 1996,8:2499-2504. doi: 10.1021/cm9602095

    7. [7]

      R. Liu, E.A. Kulp, F. Oba. Epitaxial electrodeposition of high-aspect-ratio Cu2O(110) nanostructures on InP(111)[J]. Chem. Mater., 2005,17:725-729. doi: 10.1021/cm048296l

    8. [8]

      H.Y. Zhao, Y.F. Wang, J.H. Zeng. Hydrothermal synthesis of uniform cuprous oxide microcrystals with controlled morphology[J]. Cryst. Growth Des., 2008,8:3731-3734. doi: 10.1021/cg8003678

    9. [9]

      J. Li, Y. Shi, Q. Cai. Patterning of nanostructured cuprous oxide by surfactant-assisted electrochemical deposition[J]. Cryst. Growth Des., 2008,8:2652-2659. doi: 10.1021/cg070266i

    10. [10]

      H.Z. Bao, W.H. Zhang, D.L. Shang. Shape-dependent reducibility of cuprous oxide nanocrystals[J]. J. Phys. Chem.C, 2010,114:6676-6680. doi: 10.1021/jp101617z

    11. [11]

      H. Bao, W. Zhang, Q. Hua. Crystal-plane-controlled surface restructuring and catalytic performance of oxide nanocrystals[J]. Angew. Chem. Int. Ed., 2011,50:12294-12298. doi: 10.1002/anie.v50.51

    12. [12]

      Q. Hua, T. Cao, H.Z. Bao, Z.Q. Jiang, W.X. Huang. Crystal-plane-controlled surface chemistry and catalytic performance of surfactant-free Cu2O nanocrystals[J]. Chemsuschem, 2013,6:1966-1972. doi: 10.1002/cssc.v6.10

    13. [13]

      W.C. Huang, L.M. Lyu, Y.C. Yang, M.H. Huang. Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity[J]. J. Am. Chem. Soc., 2012,134:1261-1267. doi: 10.1021/ja209662v

    14. [14]

      Y. Zhang, B. Deng, T.R. Zhang, D.M. Gao, A.W. Xu. Shape effects of Cu2O polyhedral microcrystals on photocatalytic activity[J]. J. Phys. Chem.C, 2010,114:5073-5079. doi: 10.1021/jp9110037

    15. [15]

      J.Y. Ho, M.H. Huang. Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity[J]. J. Phys. Chem.C, 2009,113:14159-14164. doi: 10.1021/jp903928p

    16. [16]

      Y. Xu, H. Wang, Y.F. Yu. Cu2O nanocrystals:surfactant-free roomtemperature morphology-modulated synthesis and shape-dependent heterogeneous organic catalytic activities[J]. J. Phys. Chem.C, 2011,115:15288-15296. doi: 10.1021/jp204982q

    17. [17]

      L.L. Li, C.Y. Nan, Q. Peng, Y.D. Li. Selective synthesis of Cu2O nanocrystals as shape-dependent catalysts for oxidative arylation of phenylacetylene[J]. Chem. Eur. J., 2012,18:10491-10496. doi: 10.1002/chem.v18.34

    18. [18]

      K. Chanda, S. Rej, M.H. Huang. Facet-dependent catalytic activity of Cu2O nanocrystals in the one-pot synthesis of 1, 2, 3-triazoles by multicomponent click reactions[J]. Chem. Eur. J., 2013,19:16036-16043. doi: 10.1002/chem.201302065

    19. [19]

      W.X. Zou, L.C. Liu, L. Zhang. Crystal-plane effects on surface and catalytic properties of Cu2O nanocrystals for NO reduction by CO[J]. Appl. Catal. A Gen., 2015,505:334-343. doi: 10.1016/j.apcata.2015.08.021

    20. [20]

      K. Chanda, S. Rej, M.H. Huang. Investigation of facet effects on the catalytic activity of Cu2O nanocrystals for efficient regioselective synthesis of 3, 5-disubstituted isoxazoles[J]. Nanoscale, 2013,5:12494-12501. doi: 10.1039/c3nr03790h

    21. [21]

      H. Zhang, X. Ren, Z.L. Cui. Shape-controlled synthesis of Cu2O nanocrystals assisted by PVP and application as catalyst for synthesis of carbon nanofibers[J]. J. Cryst. Growth, 2007,304:206-210. doi: 10.1016/j.jcrysgro.2007.01.043

    22. [22]

      A. Padwa, 3-Dipolar Cycloaddition Chemistry, Wiley, New York, 1984.

    23. [23]

      R. Ul Islam, A. Taher, M. Choudhary, M.J. Witcomb, K. Mallick. A polymer supported Cu(Ⅰ) catalyst for the 'click reaction' in aqueous media[J]. Dalton Trans., 2015,44:1341-1349. doi: 10.1039/C4DT02962C

    24. [24]

      K.F. Donnelly, A. Petronilho, M. Albrecht. Application of 1, 2, 3-triazolylidenes as versatile NHC-type ligands:synthesis, properties, and application in catalysis and beyond[J]. Chem. Commun., 2013,49:1145-1159. doi: 10.1039/C2CC37881G

    25. [25]

      P. Thirumurugan, D. Matosiuk, K. Jozwiak. Click chemistry for drug development and diverse chemical-biology applications[J]. Chem. Rev., 2013,113:4905-4979. doi: 10.1021/cr200409f

    26. [26]

      Z. Gonda, Z. Novák. Highly active copper-catalysts for azide-alkyne cycloaddition[J]. Dalton Trans., 2010,39:726-729. doi: 10.1039/B920790M

    27. [27]

      C.R. Becer, R. Hoogenboom, U.S. Schubert. Click chemistry beyond metalcatalyzed cycloaddition[J]. Angew. Chem. Int. Ed., 2009,48:4900-4908. doi: 10.1002/anie.v48:27

    28. [28]

      J.E. Moses, A.D. Moorhouse. The growing applications of click chemistry[J]. Chem. Soc. Rev., 2007,36:1249-1262. doi: 10.1039/B613014N

    29. [29]

      M. Amini, A. Bayrami, M.N. Marashi. Synthesis structure, and catalytic properties of copper, palladium and cobalt complexes containing an N, O-type bidentate thiazoline ligand[J]. Inorg. Chim. Acta, 2016,443:22-27. doi: 10.1016/j.ica.2015.12.015

    30. [30]

      M. Faraji, M. Amini, A.P. Anbari. Preparation and characterization of TiO2-nanotube/Ti plates loaded Cu2O nanoparticles as a novel heterogeneous catalyst for the azide-alkyne cycloaddition[J]. Catal. Commun., 2016,76:72-75. doi: 10.1016/j.catcom.2016.01.002

    31. [31]

      A. Akbari, N. Arsalani, M. Amini, E. Jabbari. Cube-octameric silsesquioxanemediated cargo copper Schiff baseforefficient clickreaction inaqueous media[J]. J. Mol. Catal. A Chem., 2016,414:47-54. doi: 10.1016/j.molcata.2015.12.022

    32. [32]

      C.H. Kuo, M.H. Huang. Morphologically controlled synthesis of Cu2O nanocrystals and their properties[J]. Nano Today, 2010,5:106-116. doi: 10.1016/j.nantod.2010.02.001

    33. [33]

      Z.L. Wang, Y.X. Liu, D.J. Martin. CuOx-TiO2 junction:what is the active component for photocatalytic H2 production?[J]. Phys. Chem. Chem. Phys., 2013,15:14956-14960. doi: 10.1039/c3cp52496e

    34. [34]

      A. Sharma, M. Varshney, J. Park. XANES, EXAFS and photocatalytic investigations on copper oxide nanoparticles and nanocomposites[J]. RSC Adv., 2015,5:21762-21771. doi: 10.1039/C4RA16217J

  • 加载中
    1. [1]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    2. [2]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    3. [3]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    4. [4]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    5. [5]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    6. [6]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    7. [7]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    8. [8]

      Xin LuHaoran SunXiaomeng LiChunrui LiJinfeng WangDandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936

    9. [9]

      Shan JiangLingchen MengWenyue MaQingkai QiWei ZhangBin XuLeijing LiuWenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    12. [12]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    13. [13]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    14. [14]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    15. [15]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    16. [16]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    17. [17]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    18. [18]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    19. [19]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    20. [20]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

Metrics
  • PDF Downloads(1)
  • Abstract views(549)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return