Citation: Yuan Jin-Wei, Qu Ling-Bo. KMnO4-mediated direct selective radical cross-coupling: An effective strategy for C2 arylation of quinoline N-oxide with arylboronic acids[J]. Chinese Chemical Letters, ;2017, 28(5): 981-985. doi: 10.1016/j.cclet.2017.01.016 shu

KMnO4-mediated direct selective radical cross-coupling: An effective strategy for C2 arylation of quinoline N-oxide with arylboronic acids

  • Corresponding author: Yuan Jin-Wei, yuanjinweigs@126.com
  • Received Date: 7 December 2016
    Revised Date: 12 January 2017
    Accepted Date: 16 January 2017
    Available Online: 2 May 2017

Figures(4)

  • Direct C-H functionalization of quinoline N-oxides with arylboronic acids is achieved using KMnO4 as the sole and efficient oxidative system. This method provides an efficient protocol to construct regioselectively 2-arylquinoline N-oxides via radical cross-coupling reaction in moderated to good yields under mild conditions.
  • 加载中
    1. [1]

      Vshyvenko S., Reisenauer M.R., Reisenauer S.. Synthesis and biological evaluation of unnatural derivatives of narciclasine:7-aza-nornarciclasine and its N-oxide[J]. Bioorg. Med. Chem. Lett., 2014(24):4236-4238.  

    2. [2]

      Tahar R., Vivas L., Basco L.. Indolone-N-oxide derivatives:in vitro activity against fresh clinical isolates o plasmodium falciparum. stage specificity and in vitro interactions with established antimalarial drugs[J]. J. Antimicrob. Chemother., 2011(66):2566-2572.  

    3. [3]

      Werbel L.M., Kersten S.J., Tumer W.R.. Structure-activity relationships of antimalarial indolo[3, 2-c]quinolines[1.2][J]. Eur. J. Med. Chem., 1993(28):837-852.  

    4. [4]

      Andreev V.P., Korvacheva E.G., Nizhnik Y.P.. Effect of pyridine and quinolilne Noxides on microsomal Na. K-ATPase activity[J]. Pharm. Chem. J., 2006(40):347-348.  

    5. [5]

      Smith P.W., Wyman P.A., Lovell P.. New quinoline NK3 receptor antagonists with CNS activity[J]. Bioorg. Med. Chem. Lett., 2009(19):837-840.  

    6. [6]

      Rodrigues T., Reker D., Kunze J.. Revealing the macromolecular targets of fragment-like natural products[J]. Angew. Chem. Int. Ed., 2015(54):10516-10520.  

    7. [7]

      Strekowski L., Say M., Henary M.. Synthesis and activity of substituted 2-phenyl quinoline-4-amines. antagonists of immunostimulatory CpGoligodeoxynucleotides[J]. J. Med. Chem., 2003(46):1242-1249.  

    8. [8]

      Kumar R., Kumar I., Sharma R.. Catalyst and solvent-free alkylation of quinoline N-oxides with olefins:a direct access to quinoline-substituted α-hydroxy carboxylic derivatives[J]. Org. Biomol. Chem., 2016(14):2613-2617.  

    9. [9]

      Zhao J.J., Li P., Xia C.G.. Metal-free regioselective C-3 nitrotion of quinoline N-oxides with tert-butyl nitrite[J]. RSC Adv., 2015(5):32835-32838.  

    10. [10]

      Sun K., Chen X.L., Li X.. H-phosphonate-mediated sulfonylation of heteroaromatic N-oxides:a mild and metal-free one-pot synthesis of 2-sulfonyl quinolines/pyridines[J]. Chem. Commun., 2015(51):12111-12114.  

    11. [11]

      Suzuki A.. Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles. 1995-1998[J]. J. Organomet. Chem., 1999(576):147-168.  

    12. [12]

      Hassan J., Sevignon M., Gozzi C.. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction[J]. Chem. Rev., 2002(102):1359-1469.  

    13. [13]

      Chemler S.R., Trauner D., Danishefsky S.J.. The B-alkyl Suzuki-Miyaura crosscoupling reaction:development, mechanistic study. and applications in natural product synthesis[J]. Angew. Chem. Int. Ed., 2001(40):4544-4568.  

    14. [14]

      Vuoti S., Autio J., Laitila M.. Palladium-catalyzed Suzuki-Miyaura crosscoupling of various aryl halides using ortho-alkyl-substituted arylphosphanes and (ortho-alkylphenyl) alkylphosphanes under microwave heating[J]. Eur. J. Inorg. Chem., 2008(2008):397-407.  

    15. [15]

      Zhou J., Zhang Q.F., Zhao W.H.. Chiral phosphoric acid-catalyzed asymmetric transfer hydrogenation of 3-trifluoromethylthioquinolines[J]. Org. Biomol. Chem., 2016(14):6937-6941.  

    16. [16]

      Ali N.M., McKillop A., Mitchell M.B.. Palladium-catalysed cross-coupling reactions of arylboronic acids with P-deficient heteroaryl chlorides[J]. Tetrahedron, 1992(48):8117-8126.  

    17. [17]

      Jung J.Y., Taher A., Hossain S.. Highly active heterogeneous palladium catalyst for the Suzuki reaction of heteroaryl chlorides[J]. Bull. Korean Chem. Soc., 2010(31):3010-3012.  

    18. [18]

      Tagata T., Nishida M.. The direct synthesis of 3-amino-2-phenylpyridine by using palladium charcoal was reported[J]. J. Org. Chem., 2003(68):9412-9415.

    19. [19]

      Kuriyama M., Natsuo S., Shinozawa M.. Ether-imidazolium carbenes for Suzuki-Miyaura cross-coupling of heteroaryl chlorides with aryl/heteroarylboron reagents[J]. Org. Lett., 2013(15):2716-2719.  

    20. [20]

      Malacea R., Chahdoura F., Devillard M.. ortho-(Dimesitylboryl) phenylphosphines:positive boryl effect in the palladium-catalyzed SuzukiMiyaura coupling of 2-chloropyridines[J]. Adv. Synth. Catal., 2013(355):2274-2284.  

    21. [21]

      Lee D.H., Choi M., Yu B.W.. Expanded heterogeneous Suzuki-Miyaura coupling reactions of aryl and heteroaryl chlorides under mild conditions[J]. Adv. Synth. Catal., 2009(351):2912-2920.  

    22. [22]

      Arumugam V., Kaminsky W., Nallasamy D.. ONO pincer type Pd(Ⅱ) complexes:synthesis. crystal structure and catalytic activity towards C-2 arylation of quinoline scaffolds[J]. RSC Adv., 2015(5):77948-77957.  

    23. [23]

      Seiple I.B., Su S., Rodriguez R.A.. Direct C-H arylation of electron-deficient heterocylces with arylboronic acids[J]. J. Am. Chem. Soc., 2010(132):13194-13196.  

    24. [24]

      Cho S.H., Hwang S.J., Chang S.. Palladium-catalyzed C-H functionalization of pyridine N-oxides:highly selective alkenylation and direct arylation with unactivated arenes[J]. J. Am. Chem. Soc., 2008(130):9254-9256.  

    25. [25]

      Ackermann L., Fenner S.. Direc arylations of electron-deficient (hetero)arenes with aryl or alkenyl tosylates and mesylates[J]. Chem. Commun., 2011(47):430-432.  

    26. [26]

      Duric S., Tzschucke C.. Synthesis of unsymmetrically substituted bipyridines by palladium-catalyzed direct C-H arylation of pyridine N-oxides[J]. Org. Lett., 2011(13):2310-2313.  

    27. [27]

      Campeau L.C., Stuart D.R., Leclerc J.P.. Palladium-catalyzed direct arylation of azine and azole N-oxides:reaction development[J]. J. Am. Chem. Soc, 2009(131):3291-3306.  

    28. [28]

      Wu Z.Y., Pi C., Cui X.L.. Direct C-2 alkylation of quinoline N-oxides with ethers via palladium-catalyzed dehydrogenative cross-coupling reaction[J]. Adv. Synth. Catal., 2013(355):1971-1976.  

    29. [29]

      Kianmehr E., Faghih N., Karaji S.. Copper-catalyzed crossdehydrogenative coupling of pyridine N-oxides with cyclic ethers[J]. J. Organomet. Chem., 2016(801):10-13.  

    30. [30]

      Chen X.P., Cui X.L., Wu Y.J.. C8-selective acylation of quinoline N-oxides with α-oxocarboxylic acids via palladium-catalyzed regioselective C-H bond activation[J]. Org. Lett., 2016(18):3722-3725.  

    31. [31]

      Chen X.P., Cui X.L., Wu Y.J.. One-pot approach to 8-acylated 2-quinolinones via palladium-catalyzed regioselective acylation o quinoline N-oxides[J]. Org. Lett., 2016(18):2411-2414.  

    32. [32]

      Mai W.P., Yuan J.W., Li Z.C.. Silver-catalyzed 2-pyridyl arylation of pyridine N-oxides with arylboronic acids at room temperature[J]. Synlett, 2012(23):145-149.

    33. [33]

      Li M.L., Li X., Chang H.H.. Palladium-catalyzed direct C-H arylation of pyridine N-oxides with potassium aryl-and heteroaryltrifluoroborates[J]. Org. Biomol. Chem., 2016(14):2421-2426.  

    34. [34]

      Shen Y., Chen J.X., Liu M.C.. Copper-catalyzed direc C-H arylation of pyridine N-oxides with arylboronic esters:one-pot synthesis of 2-arylpyridines[J]. Chem. Commun., 2014(50):4292-4295.  

    35. [35]

      Bering L., Antonchick A.P.. Regioselective metal-free cross-coupling of quinoline N-oxides with boronic acids[J]. Org. Lett., 2015(17):3134-3137.  

    36. [36]

      Wang J., Wang S., Wang G.. Iron-mediated direct arylation with arylboronicacids throughan arylradicaltransfer pathway[J]. Chem. Commun., 2012(48):11769-11771.  

    37. [37]

      Fujiwara Y., Domingo V., Seiple I.B.. Practical C-H functionalization of quinines with boronic acids[J]. J. Am. Chem. Soc., 2011(133):3292-3295.  

    38. [38]

      Arghya D., Srimanta M., Arun M.. Iron-catalyzed direct C-H arylation of heterocycles and quinines with arylboronic acids[J]. Eur. J. Org. Chem., 2013(2013):5251-5256.  

    39. [39]

      Parvinder P.S., Sravan Kumar A., Mahipal Y.. Iron-catalyzed crosscoupling of electron-deficient heterocycles and quinine with organoboron species via innate C-H functiionalization:application in total synthesis of pyrazine alkaloid botryllazine A[J]. J. Org. Chem., 2013(78):2639-2648.  

    40. [40]

      Ilangovan A., Polu A., Satish G.. K2S2O8-mediated metal-free direct C-H functionalization of quinines using arylboronic acids[J]. Org. Chem. Front., 2015(2):1616-1620.  

    41. [41]

      Guchhait S.K., Kashyap M., Saraf S.. Direct C-H bond arylation of (hetero)arenes with aryl and heteroarylboronic acids[J]. Synthesis, 2010(7):1166-1170.  

    42. [42]

      Wang H., Yu Y., Hong X.H.. Mn(Ⅱ)/O2-promoted oxidative annulations of vinyl isocyanides with boronic acids:synthesis of multi-substituted isoquinolines[J]. Chem. Commun., 2014(50):13485-13488.  

    43. [43]

      Liu D., Li Y.X., Qi X.T.. Nickel-catalyzed selective oxidative radical crosscoupling:an effective strategy for inert Csp3H functionalizaiton[J]. Org. Lett., 2015(17):998-1001.  

    44. [44]

      Demir A.S., Reis Ö., Emrullahoglu M.. Generation of aryl radicals from arylboronic acids by manganese(Ⅲ) acetate:synthesis of biaryls and heterobiaryls[J]. J. Org. Chem., 2003(68):578-580.  

    45. [45]

      Demir A.S., Findik H.. Potassium permanganate/carboxylic acid/organic solvent:a powerful reagent for enone oxidation and aryl couling reactions[J]. Tetrahedron, 2008(64):6196-6201.  

    46. [46]

      Demir A.S., Findik H., Saygili N.. Manganese(Ⅲ) acetate-mediated synthesis of biarylsunder microwave irradiation[J]. Tetrahedron, 2010(66):1308-1312.  

    47. [47]

      Yuan J.W., Yang L.R., Yin Q.Y.. KMnO4/AcOH-mediated C3-selective direct arylation of coumarins with arylboronic acids[J]. RSC Adv., 2016(6):35936-35944.  

    48. [48]

      Tobisu M., Koh K., Furukawa T.. Modular synthesis of phenanthridine derivatives by oxidative cycliaztion of 2-isocyanobiphenyls with organoboron reagents[J]. Angew. Chem. Int. Ed., 2012(51):11363-11366.  

  • 加载中
    1. [1]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    2. [2]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    3. [3]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    4. [4]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    5. [5]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    6. [6]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    7. [7]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    8. [8]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    9. [9]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    10. [10]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    11. [11]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    12. [12]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    13. [13]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    14. [14]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    15. [15]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    16. [16]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

    17. [17]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    18. [18]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    19. [19]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    20. [20]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

Metrics
  • PDF Downloads(8)
  • Abstract views(865)
  • HTML views(108)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return