Citation: Liu Wen-Xu, Yao Jian-Nian, Zhan Chuan-Lang. Tailoring the photophysical and photovoltaic properties of boron-difluorodipyrromethene dimers[J]. Chinese Chemical Letters, ;2017, 28(4): 875-880. doi: 10.1016/j.cclet.2017.01.013 shu

Tailoring the photophysical and photovoltaic properties of boron-difluorodipyrromethene dimers

  • Corresponding author: Zhan Chuan-Lang, clzhan@iccas.ac.cn
  • Received Date: 24 November 2016
    Revised Date: 26 December 2016
    Accepted Date: 26 December 2016
    Available Online: 16 April 2017

Figures(5)

  • Five boron-difluorodipyrromethene (BODIPY) dimers have been designed and synthesized successfully via acid-catalysed condensation and Pd-catalysed cross-coupling reactions.The structural modification, including verifying the structures of the π-bridges, altering the positions the bridges link (meso-or β-positions), and regulating the molecular planarity, can modulate the photophysical properties and the aggregation behaviors of the five dimers efficiently.Solution-processed organic solar cells were fabricated to evaluate the photovoltaic properties of these molecules further either as acceptors or donors.When using as nonfullerene acceptor and blended with the polymer donor of PTB7, an open-circuit voltaic (Voc) of 1.12 and 1.08 V was achieved from the thiophene and benzodithiophene bridged BODIPY dimers, respectively.This Voc is among the top values achieved from the non-fullerene organic solar cells so far.
  • 加载中
    1. [1]

      J. Q. Feng, B. L. Liang, D. L. Wang, L. Xue, X. Y. Li, Novel fluorescent dyes with fused perylene tetracarboxlic diimide and BODIPY analogue structures, Org. Lett. 10 (2008)4437-4440.

    2. [2]

      Ulrich G., Ziessel R., Harriman A. The chemistry of fluorescent Bodipy dyes: versatility unsurpassed[J]. Angew.Chem.Int.Ed., 2008,47:1184-1201. doi: 10.1002/(ISSN)1521-3773

    3. [3]

      Kamkaew A., Burgess K. Aza-BODIPY dyes with enhanced hydrophilicity[J]. Chem.Commun., 2015,51:10664-10667. doi: 10.1039/C5CC03649F

    4. [4]

      Mula S., Frein S., Russo V.. Red and blue liquid-crystalline borondipyrromethene dendrimers[J]. Chem.Mater., 2015,27:2332-2342. doi: 10.1021/cm503577y

    5. [5]

      Y.Zhang, Y.G.Gao, Y.D.Shi, et al., [12] aneN3-based BODIPY as a selective and sensitive off? on sensor for the sequential recognition of Cu2+ ions and ADP, Chin.Chem.Lett.26(2015)894-898.  doi: 10.1016/j.cclet.2015.05.032

    6. [6]

      Shi P.C., Jiang X.D., Gao R.N., Dou Y.Y., Zhao W.L. Synthesis and application of Vis/NIR dialkylaminophenylbuta-1, 3-dienyl borondipyrromethene dyes[J]. Chin. Chem.Lett., 2015,26:834-838. doi: 10.1016/j.cclet.2014.11.010

    7. [7]

      Zhu S.L., Zhang J.T., Janjanam J.. Highly water-soluble BODIPY-based fluorescent probes for sensitive fluorescent sensing of zinc (â…¡)[J]. J.Mater.Chem. B, 2013,1:1722-1728. doi: 10.1039/c3tb00249g

    8. [8]

      K.Gräf , T.Körzdörfer , S.Kümmel , Thelakkat M. Synthesis of donor-substituted meso-phenyl and meso-ethynylphenyl BODIPYs with broad absorption[J]. New J. Chem., 2013,37:1417-1426. doi: 10.1039/c3nj00157a

    9. [9]

      Qin C.J., Mirloup A., Leclerc N.. Molecular engineering of new thienyl-Bodipy dyes for highly efficient panchromatic sensitized solar cells[J]. Adv. Energy Mater., 2014,41400085. doi: 10.1002/aenm.201400085

    10. [10]

      Kolemen, Cakmak, S.Erten-Ela. Solid-state dye-sensitized solar cells using red and near-IR absorbing Bodipy sensitizers[J]. Org.Lett., 2010,12:3812-3815. doi: 10.1021/ol1014762

    11. [11]

      DiCesare N., Lakowicz J.R. Fluorescent probe for monosaccharides based on a functionalized boron-dipyrromethene with a boronic acid group[J]. Tetrahedron Lett., 2001,42:9105-9108. doi: 10.1016/S0040-4039(01)02022-6

    12. [12]

      J. Karolin, L. B. A. Johansson, L. Strandberg, T. Ny, Fluorescence and absorption spectroscopic properties of dipyrrometheneboron difluoride (BODIPY) derivatives in liquids lipid membranes, and proteins, J. Am. Chem. Soc. 116 (1994)7801-7806.

    13. [13]

      Loudet A., Burgess K. BODIPY dyes and their derivatives:syntheses and spectroscopic properties[J]. Chem.Rev., 2007,107:4891-4932. doi: 10.1021/cr078381n

    14. [14]

      Lu H., Mack J., Yang Y.C., Shen Z. Structural modification strategies for the rational design of red/NIR region BODIPYs[J]. Chem.Soc.Rev., 2014,43:4778-4823. doi: 10.1039/c4cs00030g

    15. [15]

      Ziessel R., Ulrich G., Harriman A. The chemistry of Bodipy:a new El Dorado for fluorescence tools[J]. New J.Chem., 2007,31:496-501. doi: 10.1039/b617972j

    16. [16]

      Bessette A., Hanan G.S. Design, synthesis and photophysical studies of dipyrromethene-based materials:insights into their applications in organic photovoltaic devices[J]. Chem.Soc.Rev., 2014,43:3342-3405. doi: 10.1039/c3cs60411j

    17. [17]

      Squeo B.M., Gasparini N., Ameri T.. Ultra low band gap α, β-unsubstituted BODIPY-based copolymer synthesized by palladium catalyzed cross-coupling polymerization for near infrared organic photovoltaics[J]. J.Mater.Chem.A, 2015,3:16279-16286. doi: 10.1039/C5TA04229A

    18. [18]

      Zhang X.F., Zhang Y.D., Chen L.C., Xiao Y. Star-shaped carbazole-based BODIPY derivatives with improved hole transportation and near-infrared absorption for small-molecule organic solar cells with high open-circuit voltages[J]. RSC Adv., 2015,5:32283-32289. doi: 10.1039/C5RA02414E

    19. [19]

      L. G. Xiao, H. D. Wang, K. Gao, et al. , A-D-A type small molecules based on boron dipyrromethene for solution-processed organic solar cells, Chem. Asian J. 10 (2015)1513-1518.

    20. [20]

      Liu W.X., Yao J.N., Zhan C.L. Performance enhancement of BODIPY dimer-based small-molecule solar cells using a visible-photon-capturing diketopyrrolopyrrole P-bridge[J]. RSC Adv., 2015,5:74238-74241. doi: 10.1039/C5RA16725F

    21. [21]

      Liu W.X., Tang A.L., Chen J.W.. Photocurrent enhancement of BODIPY-based solution-processed small-molecule solar cells by dimerization via the meso position[J]. ACS Appl.Mater.Interfaces, 2014,6:22496-22505. doi: 10.1021/am506585u

    22. [22]

      He W.H., Jiang Y.B., Qin Y. Synthesis and photovoltaic properties of a low bandgap BODIPY? Pt conjugated polymer[J]. Polym.Chem., 2014,5:1298-1304. doi: 10.1039/C3PY01396K

    23. [23]

      S. P. Economopoulos, C. L. Chochos, H. A. Ioannidou, et al. , Novel BODIPY-based conjugated polymers donors for organic photovoltaic applications, RSC Adv. 3 (2013)10221-10229.

    24. [24]

      Bura T., Leclerc N., Fall S.. High-performance solution-processed solar cells and ambipolar behavior in organic field-effect transistors with thienyl-BODIPY scaffoldings[J]. J.Am.Chem.Soc., 2012,134:17404-17407. doi: 10.1021/ja3072513

    25. [25]

      Lin H.Y., Huang W.C., Chen Y.C.. BODIPY dyes with b-conjugation and their applications for high-efficiency inverted small molecule solar cells[J]. Chem.Commun., 2012,48:8913-8915. doi: 10.1039/c2cc34286c

    26. [26]

      B. Kim, B. W. Ma, V. R. Donuru, H. Y. Liu, J. M. J. Fréchet, Bodipy-backboned polymers as electron donor in bulk heterojunction solar cells, Chem. Commun. 46(2010)4148-4150.

    27. [27]

      Rousseau T., Cravino A., Bura T.. BODIPY derivatives as donor materials for bulk heterojunction solar cells[J]. Chem.Commun., 2009,167:1673-1675.

    28. [28]

      Poe A.M., Pelle A.M.D., Subrahmanyam A.V.. Small molecule BODIPY dyes as non-fullerene acceptors in bulk heterojunction organic photovoltaics[J]. Chem.Commun., 2014,50:2913-2915. doi: 10.1039/c3cc49648a

    29. [29]

      Kee H.L., Kirmaier C., Yu L.H.. Structural control of the photodynamics of boron-dipyrrin complexes[J]. J.Phys.Chem.B, 2005,109:20433-20443. doi: 10.1021/jp0525078

    30. [30]

      Huang J.H., Zhan C.L., Zhang X.. Solution-processed DPP-based small molecule that gives high photovoltaic efficiency with judicious device optimization[J]. ACS Appl.Mater.Interfaces, 2013,5:2033-2039. doi: 10.1021/am302896u

    31. [31]

      Hayashi Y., Obata N., Tamaru M.. Facile synthesis of biphenyl-fused BODIPY and its property[J]. Org.Lett., 2012,14:866-869. doi: 10.1021/ol2033916

    32. [32]

      Henson Z.B., Welch G.C., T.van der Poll, Bazan G.C. Pyridalthiadiazole-based narrow band gap chromophores[J]. J.Am.Chem.Soc., 2012,134:3766-3779. doi: 10.1021/ja209331y

    33. [33]

      Y. Y. Liang, Z. Xu, J. B. Xia, et al. , For the bright futureâ€"bulk heterojunction polymer solar cells with power conversion efficiency of 7. 4%, Adv. Mater 22 (2010) E135-E138.

    34. [34]

      Qin T.S., Zajaczkowski W., Pisula W.. Tailored donor? acceptor polymers with an A-D1-A-D2 structure:controlling intermolecular interactions to enable enhanced polymer photovoltaic devices[J]. J.Am.Chem.Soc, 2014,136:6049-6055. doi: 10.1021/ja500935d

    35. [35]

      Jiang B., Zhang X., Zhan C.L.. Benzodithiophene bridged dimeric perylene diimide amphiphiles as efficient solution-processed non-fullerene small molecules[J]. Polym.Chem., 2013,4:4631-4638. doi: 10.1039/c3py00457k

    36. [36]

      W. H. Wu, H. M. Guo, W. T. Wu, S. M. Ji, J. Z. Zhao, Organic triplet sensitizer library derived from a single chromophore (BODIPY) with long-lived triplet excited state for triplet?triplet annihilation based upconversion, J. Org. Chem. 76 (2011)7056-7064.

    37. [37]

      Jiao L.J., Pang W.D., Zhou J.Y.. Regioselective stepwise bromination of boron dipyrromethene (BODIPY) dyes[J]. J.Org.Chem., 2011,76:9988-9996. doi: 10.1021/jo201754m

  • 加载中
    1. [1]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    2. [2]

      Aolei TanXiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276

    3. [3]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    4. [4]

      Wenjuan JinZelong ChenYi WangJiaxuan LiJiahui LiYuxin PeiZhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328

    5. [5]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    6. [6]

      Yan ZhuJia LiuMeiheng LvTingting WangDongxiang ZhangRong ShangXin-Dong JiangJianjun DuGuiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446

    7. [7]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    8. [8]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    9. [9]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    10. [10]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

    11. [11]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    12. [12]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    13. [13]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    14. [14]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    15. [15]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    16. [16]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    17. [17]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    18. [18]

      Jin WangXiaoyan PanJunyu ZhangQingqing ZhangYanchen LiWeiwei GuoJie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187

    19. [19]

      Xiaobo LiQunyan WuCongzhi WangJianhui LanMeng ZhangWeiqun Shi . Theoretical perspectives on the reduction of Pu(Ⅳ) and Np(Ⅵ) by methylhydrazine in HNO3 solution: Implications for Np/Pu separation. Chinese Chemical Letters, 2024, 35(7): 109359-. doi: 10.1016/j.cclet.2023.109359

    20. [20]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

Metrics
  • PDF Downloads(1)
  • Abstract views(481)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return