Citation: Gao Jun, Ren Zhi-Gang, Lang Jian-Ping. One-pot aqueous-phase synthesis of quinoxalines through oxidative cyclization of deoxybenzoins with 1, 2-phenylenediamines catalyzed by a zwtterionic Cu(Ⅱ)/calix[4]arene complex[J]. Chinese Chemical Letters, ;2017, 28(5): 1087-1092. doi: 10.1016/j.cclet.2016.12.035 shu

One-pot aqueous-phase synthesis of quinoxalines through oxidative cyclization of deoxybenzoins with 1, 2-phenylenediamines catalyzed by a zwtterionic Cu(Ⅱ)/calix[4]arene complex

  • Corresponding author: Ren Zhi-Gang, renzhigang@suda.edu.cn Lang Jian-Ping, jplang@suda.edu.cn
  • Received Date: 15 November 2016
    Revised Date: 12 December 2016
    Accepted Date: 15 December 2016
    Available Online: 8 May 2017

Figures(5)

  • A green protocol for the synthesis of quinoxalines has been developed from catalytic oxidative cyclization of deoxybenzoins with 1, 2-phenylenediamines in water. The optimal conditions are involved in the use of a water-soluble mononuclear copper(Ⅱ) complex of a zwitterionic calix[4]arene[Cu(Ⅱ)L(H2O)]I2 (1, H4L=[5, 11, 17, 23-tetrakis (trimethylammonium)-25, 26, 27, 28-tetrahydroxycalix[4]arene]) as a catalyst in alkali solution after refluxing for 15 h in O2. The target quinoxaline and its derivatives were obtained in good yields (up to 88%). The procedure described in this paper is simple, practical and environmentally benign.
  • 加载中
    1. [1]

      R.B. Baudy, L.P. Greenblatt, I.L. Jirkovsky. Potent quinoxaline-spaced phosphono α-amino acids of the AP-6 type as competitive NMDA antagonists:synthesis and biological evaluation[J]. J. Med. Chem., 1993,36:331-342. doi: 10.1021/jm00055a004

    2. [2]

      S.B. Lee, Y.I. Park, M.S. Dong, Y.D. Gong. Identification of 2, 3, 6-trisubstituted quinoxaline derivatives as a Wnt2/β-catenin pathway inhibitor in non-smallcell lung cancer cell lines[J]. Bioorg. Med. Chem. Lett., 2010,20:5900-5904. doi: 10.1016/j.bmcl.2010.07.088

    3. [3]

      M.M. Badran, K.A.M. Abouzid, M.H.M. Hussein. Synthesis of certain substituted quinoxalines as antimicrobial agents (part Ⅱ)[J]. Arch. Pharm. Res., 2003,26:107-113. doi: 10.1007/BF02976653

    4. [4]

      J.P. Duan, P.P. Sun, C.H. Cheng. New Iridium complexes as highly efficient orange-red emitters in organic light-emitting diodes[J]. Adv. Mater., 2003,15:224-228. doi: 10.1002/adma.200390051

    5. [5]

      D. Schneidenbach, S. Ammermann, M. Debeaux. Efficient and long-time stable red Iridium(Ⅲ) complexes for organic light-emitting diodes based on quinoxaline ligands[J]. Inorg. Chem., 2010,49:397-406. doi: 10.1021/ic9009898

    6. [6]

      S. Dailey, W.J. Feast, R.J. Peace. Synthesis and device characterisation of side-chain polymer electron transport materials for organic semiconductor applications[J]. J. Mater. Chem., 2001,11:2238-2243. doi: 10.1039/b104674h

    7. [7]

      R.S. Bhosale, S.R. Sarda, S.S. Ardhapure. An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using molecular iodine as the catalyst[J]. Tetrahedron Lett., 2005,46:7183-7186. doi: 10.1016/j.tetlet.2005.08.080

    8. [8]

      A. Dhakshinamoorthy, K. Kanagaraj, K. Pitchumani. Zn2+-K10-clay (clayzic) as an efficient water-tolerant, solid acid catalyst for the synthesis of benzimidazoles and quinoxalines at room temperature[J]. Tetrahedron Lett., 2011,52:69-73. doi: 10.1016/j.tetlet.2010.10.146

    9. [9]

      W.X. Guo, H.L. Jin, J.X. Chen. An efficient catalyst-free protocol for the synthesis of quinoxaline derivatives under ultrasound irradiation[J]. J. Braz. Chem. Soc., 2009,20:1674-1679. doi: 10.1590/S0103-50532009000900016

    10. [10]

      S.V. More, M.N.V. Sastry, C.C. Wang, C.F. Yao. Molecular iodine:a powerful catalyst for the easy and efficient synthesis of quinoxalines[J]. Tetrahedron Lett., 2005,46:6345-6348. doi: 10.1016/j.tetlet.2005.07.026

    11. [11]

      S.V. More, M.N.V. Sastry, C.F. Yao. Cerium (Ⅳ) ammonium nitrate (CAN) as a catalyst in tap water:a simple, proficient and green approach for the synthesis of quinoxalines[J]. Green Chem., 2006,8:91-95. doi: 10.1039/B510677J

    12. [12]

      S. Naskar, P. Paira, R. Paira. Montmorillonite K-10 clay catalyzed solventfree synthesis of bis-indolylindane-1, 3-dione, 2-(1', 3'-dihydro-1H-[2, 3'] biindolyl-2'-ylidene)-indan-1, 3-dione and bisindolylindeno[1, 2-b]quinoxaline under microwave irradiation[J]. Tetrahedron, 2010,66:5196-5203. doi: 10.1016/j.tet.2010.04.084

    13. [13]

      M. Tingoli, M. Mazzella, B. Panunzi, A. Tuzi. Elemental iodine or diphenyl diselenide in the[Bis(trifluoroacetoxy)iodo]benzene-mediated conversion of alkynes into 1, 2-diketones[J]. Eur. J. Org. Chem., 2011,2011:399-404. doi: 10.1002/ejoc.v2011.2

    14. [14]

      T.K. Huang, L. Shi, R. Wang, X.Z. Guo, X.X. Lu. Keggin type heteropolyacidscatalyzed synthesis of quinoxaline derivatives in water[J]. Chin. Chem. Lett., 2009,20:161-164. doi: 10.1016/j.cclet.2008.10.048

    15. [15]

      S. Khaksar, M. Tajbakhsh, M. Gholami, F. Rostamnezhad. A highly efficient procedure for the synthesis of quinoxaline derivatives using polyvinylpolypyrrolidone supported triflic acid catalyst (PVPP OTf)[J]. Chin. Chem. Lett., 2014,25:1287-1290. doi: 10.1016/j.cclet.2014.04.008

    16. [16]

      R. Mahesh, A.K. Dhar, T. Sasank TVNV, S. Thirunavukkarasu, T. Devadoss. Citric acid:an efficient and green catalyst for rapid one pot synthesis of quinoxaline derivatives at room temperature[J]. Chin. Chem. Lett., 2011,22:389-392. doi: 10.1016/j.cclet.2010.11.002

    17. [17]

      M.M. Ali, M.M.F. Ismail, M.S.A. El-Gaby, M.A. Zahran, Y.A. Ammar. Synthesis and antimicrobial activities of some novel quinoxalinone derivatives[J]. Molecules, 2000,5:864-873. doi: 10.3390/50600864

    18. [18]

      S. Antoniotti, E. Duñach. Direct and catalytic synthesis of quinoxaline derivatives from epoxides and ene-1, 2-diamines[J]. Tetrahedron Lett., 2002,43:3971-3973. doi: 10.1016/S0040-4039(02)00715-3

    19. [19]

      M.K. Nasar, R.R. Kumar, S. Perumal. Three-component tandem reactions of (2-arylsulfanyl-3-aryl-2-oxiranyl)(aryl)methanones and o-phenylenediamine:formation of quinoxalines[J]. Tetrahedron Lett., 2007,48:2155-2158. doi: 10.1016/j.tetlet.2007.01.106

    20. [20]

      S. Chandrasekhar, N.K. Reddy, V.P. Kumar. Oxidation of alkynes using PdCl2/CuCl2 in PEG as a recyclable catalytic system:one-pot synthesis of quinoxalines[J]. Tetrahedron Lett., 2010,51:3623-3625. doi: 10.1016/j.tetlet.2010.05.006

    21. [21]

      W. Wang, Y.W. Shen, X. Meng. Copper-catalyzed synthesis of quinoxalines with o-phenylenediamine and terminal alkyne in the presence of bases[J]. Org. Lett., 2011,13:4514-4517. doi: 10.1021/ol201664x

    22. [22]

      S.Y. Kim, K.H. Park, Y.K. Chung. Manganese(Ⅳ) dioxide-catalyzed synthesis of quinoxalines under microwave irradiation[J]. Chem. Commun., 2005:1321-1323.

    23. [23]

      C.S. Marques, N. Moura, A.J. Burke. A simple, highly regioselective, one-pot stereoselective synthesis of tertiary α-hydroxyesters:a tandem oxidation/benzilic ester rearrangement[J]. Tetrahedron Lett., 2006,47:6049-6052. doi: 10.1016/j.tetlet.2006.06.107

    24. [24]

      C.S. Cho, W.X. Ren. A recyclable copper catalysis in quinoxaline synthesis from α-hydroxyketones and o-phenylenediamines[J]. J. Organomet. Chem., 2009,694:3215-3217. doi: 10.1016/j.jorganchem.2009.06.002

    25. [25]

      C. Zhang, Z.J. Xu, L.R. Zhang, N. Jiao. Et3N-catalyzed oxidative dehydrogenative coupling of α-unsubstituted aldehydes and ketones with aryl diamines leading to quinoxalines using molecular oxygen as oxidant[J]. Tetrahedron, 2012,68:5258-5262. doi: 10.1016/j.tet.2012.03.020

    26. [26]

      C.S. Cho, S.G. Oh. A new ruthenium-catalyzed approach for quinoxalines from o-phenylenediamines and vicinal-diols[J]. Tetrahedron Lett., 2006,47:5633-5636. doi: 10.1016/j.tetlet.2006.06.038

    27. [27]

      M. Lian, Q. Li, Y.P. Zhu, G.D. Yin, A.X. Wu. Logic design and synthesis of quinoxalines via the integration of iodination/oxidation/cyclization sequences from ketones and 1, 2-diamines[J]. Tetrahedron, 2012,68:9598-9605. doi: 10.1016/j.tet.2012.09.056

    28. [28]

      J.W. Yu, S. Mao, Y.Q. Wang. Copper-catalyzed base-accelerated direct oxidation of C-H bond to synthesize benzils, isatins, and quinoxalines with molecular oxygen as terminal oxidant[J]. Tetrahedron Lett., 2015,56:1575-1580. doi: 10.1016/j.tetlet.2015.02.019

    29. [29]

      L.L. Liu, H.X. Li, L.M. Wan. A Mn(Ⅲ)-superoxo complex of a zwitterionic calix[4] arene with an unprecedented linear end-on Mn(Ⅲ)-O2 arrangement and good catalytic performance for alkene epoxidation[J]. Chem. Commun., 2011,47:11146-11148. doi: 10.1039/c1cc14262c

    30. [30]

      L.L. Liu, Z.G. Ren, L.M. Wan, H.Y. Ding, J.P. Lang. Inclusion of unique four-clawed crown-like nitrate-water cluster[(NO3)6(H2O)6]6- anions into the inter-spaces of a 3D H-bonded cationic net formed by a cationic calix[4] arene[J]. CrystEngComm, 2011,13:5718-5723. doi: 10.1039/c1ce05377a

    31. [31]

      L.M. Wan, H.X. Li, W. Zhao. Oxidative po lymerization of 2, 6-dimethylphenol to form poly(2, 6-dimethyl-1, 4-phenylene oxide) in water through one water-soluble copper(Ⅱ) complex of a zwitterionic calix[J]. J. Polym. Sci. Part A Polym. Chem., 2012,50:4864-4870. doi: 10.1002/pola.v50.23

    32. [32]

      J. Gao, Z.G. Ren, J.P. Lang. Oxidation of benzyl alcohols to benzaldehydes in water catalyzed by a Cu(Ⅱ) complex with a zwitterionic calix[J]. J. Organomet. Chem., 2015,791:88-92.

    33. [33]

      G.R. Bardajee, R. Malakooti, F. Jami, Z. Parsaei, H. Atashin. Covalent anchoring of copper-Schiff base complex into SBA-15 as a heterogeneous catalyst for the synthesis of pyridopyrazine and quinoxaline derivatives[J]. Catal. Commun., 2012,27:49-53. doi: 10.1016/j.catcom.2012.06.028

    34. [34]

      D. Kumar, K. Seth, D.N. Kommi, S. Bhagat, A.K. Chakraborti. Surfactant micelles as microreactors for the synthesis of quinoxalines in water:scope and limitations of surfactant catalysis[J]. RSC Adv., 2013,3:15157-15168. doi: 10.1039/c3ra41038b

  • 加载中
    1. [1]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

    2. [2]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    3. [3]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    4. [4]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    5. [5]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    6. [6]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    7. [7]

      Yihu Ke Shuai Wang Fei Jin Guangbo Liu Zhiliang Jin Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458

    8. [8]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    9. [9]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    10. [10]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    11. [11]

      Bowen WangLongwu SunQianqian CaoXinzhi LiJianai ChenShizhao WangMiaolin KeFener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617

    12. [12]

      Hong-Rui LiXia KangRui GaoMiao-Miao ShiBo BiZe-Yu ChenJun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958

    13. [13]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    14. [14]

      Mengjia Luo Yi Qiu Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446

    15. [15]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

    16. [16]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    17. [17]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    18. [18]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    19. [19]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    20. [20]

      Ying-Yu ZhangJia-Qi LuoYan HanWan-Ying ZhangYi ZhangHai-Feng LuDa-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530

Metrics
  • PDF Downloads(6)
  • Abstract views(769)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return