Citation: Chen Hai-Jiang, Jiang Yan-Juan, Zhang Yong-Qiang, Jing Qi-Wei, Liu Na, Wang Yan, Zhang Wan-Nian, Sheng Chun-Quan. New triazole derivatives containing substituted 1, 2, 3-triazole side chains: Design, synthesis and antifungal activity[J]. Chinese Chemical Letters, ;2017, 28(4): 913-918. doi: 10.1016/j.cclet.2016.11.027 shu

New triazole derivatives containing substituted 1, 2, 3-triazole side chains: Design, synthesis and antifungal activity

  • Corresponding author: Sheng Chun-Quan, shengcq@hotmail.com
  • * Corresponding author at: School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian 350122, People's Republic of China.
  • Received Date: 29 September 2016
    Revised Date: 15 November 2016
    Accepted Date: 15 November 2016
    Available Online: 27 June 2016

Figures(5)

  • In order to discover new generation of triazole antifungal agents, a series of novel antifungal triazoles were designed and synthesized by structural simplification of our previously identified triazole-piperdine-heterocycle lead compounds.Several target compounds showed good antifungal activity with a broad spectrum.In particular, compound 7l was highly active against Candida albicans and Candida glabrata.Moreover, compound 7l showed potent in vivo antifungal efficacy in the Caenorhabditis elegans-C.albicans infection model.
  • 加载中
    1. [1]

      Enoch D.A., Ludlam H.A., Brown N.M. Invasive fungal infections:a review of epidemiology and management options[J]. J.Med.Microbiol., 2006,55:809-818. doi: 10.1099/jmm.0.46548-0

    2. [2]

      Lai C.C., Tan C.K., Huang Y.T., Shao P.L., Hsueh P.R. Current challenges in the management of invasive fungal infections[J]. J.Infect.Chemother., 2008,14:77-85. doi: 10.1007/s10156-007-0595-7

    3. [3]

      Park B.J., Wannemuehler K.A., Marston B.J.. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS[J]. AIDS, 2009,23:525-530. doi: 10.1097/QAD.0b013e328322ffac

    4. [4]

      Odds F.C. Genomics, molecular targets and the discovery of antifungal drugs: genómica, dianas moleculares y el descubrimiento de fármacos antifúngicos[J]. Rev.Iberoam.Micol., 2005,22:229-237. doi: 10.1016/S1130-1406(05)70048-6

    5. [5]

      Odds F.C., Brown A.J.P., Gow N.A.R. Antifungal agents:mechanisms of action[J]. Trends Microbiol., 2003,11:272-279. doi: 10.1016/S0966-842X(03)00117-3

    6. [6]

      Ostrosky-Zeichner L., Marr K.A., Rex J.H., Cohen S.H. Amphotericin B:time for a new"gold standard"[J]. Clin.Infect.Dis., 2003,37:415-425. doi: 10.1086/376634

    7. [7]

      Fanos V., Cataldi L. Amphotericin B-induced nephrotoxicity:a review[J]. J. Chemother., 2000,12:463-470. doi: 10.1179/joc.2000.12.6.463

    8. [8]

      Pfaller M.A. Antifungal drug resistance:mechanisms, epidemiology, and consequences for treatment[J]. Am.J.Med., 2012,125:S3-S13. doi: 10.1016/S0002-9343(12)00756-5

    9. [9]

      Guillon R., Pagniez F., Rambaud C.. Design, synthesis, and biological evaluation of 1-[(biarylmethyl)methylamino] -2-(2, 4-difluorophenyl)-3-(1H-1, 2, 4-triazol-1-yl)propan-2-ols as potent antifungal agents:new insights into structure-activity relationships[J]. ChemMedChem, 2011,6:1806-1815. doi: 10.1002/cmdc.v6.10

    10. [10]

      Guillon R., Pagniez F., Giraud F.. Design, synthesis, and in vitro antifungal activity of 1-[(4-substituted-benzyl)methylamino] -2-(2, 4-difluorophenyl)-3-(1H-1, 2, 4-triazol-1-yl)propan-2-ols[J]. ChemMedChem, 2011,6:816-825. doi: 10.1002/cmdc.v6.5

    11. [11]

      Guillon R., Logé C., Pagniez F.. Synthesis and in vitro antifungal evaluation of 2-(2, 4-difluorophenyl)-1-[(1H-indol-3-ylmethyl)methylamino] -3-(1H-1, 2, 4-triazol-1-yl)propan-2-ols[J]. J.Enzyme Inhib.Med.Chem., 2011,26:261-269. doi: 10.3109/14756366.2010.503607

    12. [12]

      Guillon R., Giraud F., Logé C., Borgne M.Le. Design of new antifungal agents:synthesis and evaluation of 1-[(1H-indol-5-ylmethyl)amino] -2-phenyl-3-(1H-1, 2, 4-triazol-1-yl)propan-2-ols[J]. Bioorg.Med.Chem.Lett., 2009,19:5833-5836. doi: 10.1016/j.bmcl.2009.08.089

    13. [13]

      Giraud F., Guillon R., Logé C.. Synthesis and structure-activity relationships of 2-phenyl-1-[(pyridinyl-and piperidinylmethyl)amino] -3-(1H-1, 2, 4-triazol-1-yl)propan-2-ols as antifungal agents[J]. Bioorg.Med.Chem. Lett., 2009,19:301-304. doi: 10.1016/j.bmcl.2008.11.101

    14. [14]

      Pettit N.N., Carver P.L. Isavuconazole:a new option for the management of invasive fungal infections[J]. Ann.Pharmacother., 2015,49:825-842. doi: 10.1177/1060028015581679

    15. [15]

      Türel O.. Newer antifungal agents[J]. Expert.Rev.Anti Infect.Ther., 2011,9:325-338. doi: 10.1586/eri.10.163

    16. [16]

      Szpilman A.M., Carreira E.M. Probing the biology of natural products: molecular editing by diverted total synthesis[J]. Angew.Chem.Int.Ed., 2010,49:9592-9628. doi: 10.1002/anie.200904761

    17. [17]

      Sheng C.Q., Miao Z.Y., Ji H.T.. Three-dimensional model of lanosterol 14alpha-demethylase from Cryptococcus neoformans:active-site characterization and insights into azole binding[J]. Antimicrob.Agents Chemother., 2009,53:3487-3495. doi: 10.1128/AAC.01630-08

    18. [18]

      Sheng C.Q., Wang W.Y., Che X.Y.. Improved model of lanosterol 14alpha-demethylase by ligand-supported homology modeling:validation by virtual screening and azole optimization[J]. ChemMedChem, 2010,5:390-397. doi: 10.1002/cmdc.v5:3

    19. [19]

      Sheng C., Zhang W., Zhang M.. Homology modeling of lanosterol 14alpha-demethylase of Candida albicans and Aspergillus fumigatus and insights into the enzyme-substrate Interactions[J]. J.Biomol.Struct.Dyn., 2004,22:91-99. doi: 10.1080/07391102.2004.10506984

    20. [20]

      Sheng C.Q., Chen S.H., Ji H.T.. Evolutionary trace analysis of CYP51 family: implication for site-directed mutagenesis and novel antifungal drug design[J]. J. Mol.Model., 2010,16:279-284. doi: 10.1007/s00894-009-0527-9

    21. [21]

      Sheng C.Q., Zhang W.N., Ji H.T.. Structure-based optimization of azole antifungal agents by CoMFA CoMSIA, and molecular docking[J]. J.Med.Chem., 2006,49:2512-2525. doi: 10.1021/jm051211n

    22. [22]

      Che X.Y., Sheng C.Q., Wang W.Y.. New azoles with potent antifungal activity:design, synthesis and molecular docking[J]. Eur.J.Med.Chem., 2009,44:4218-4226. doi: 10.1016/j.ejmech.2009.05.018

    23. [23]

      Jiang Z.G., Wang Y., Wang W.Y.. Discovery of highly potent triazole antifungal derivatives by heterocycle-benzene bioisosteric replacement[J]. Eur.J. Med.Chem., 2013,64:16-22. doi: 10.1016/j.ejmech.2013.04.025

    24. [24]

      Sheng C.Q., Che X.Y., Wang W.Y.. Design and synthesis of novel triazole antifungal derivatives by structure-based bioisosterism[J]. Eur.J.Med.Chem., 2011,46:5276-5282. doi: 10.1016/j.ejmech.2011.03.019

    25. [25]

      Sheng C.Q., Che X.Y., Wang W.Y.. Structure-based design synthesis, and antifungal activity of new triazole derivatives[J]. Chem.Biol.Drug Des., 2011,78:309-313. doi: 10.1111/jpp.2011.78.issue-2

    26. [26]

      Wang W.Y., Sheng C.Q., Che X.. Discovery of highly potent novel antifungal azoles by structure-based rational design[J]. Bioorg.Med.Chem.Lett., 2009,19:5965-5969. doi: 10.1016/j.bmcl.2009.07.144

    27. [27]

      Zhu S.P., Wang W.Y., Fang K.. Design, synthesis and antifungal activity of carbazole derivatives[J]. Chin.Chem.Lett., 2014,25:229-233. doi: 10.1016/j.cclet.2013.10.022

    28. [28]

      Wang W.Y., Wang S.Z., Liu Y.. Novel conformationally restricted triazole derivatives with potent antifungal activity[J]. Eur.J.Med.Chem., 2010,45:6020-6026. doi: 10.1016/j.ejmech.2010.09.070

    29. [29]

      Xu Y.L., Sheng C.Q., Wang W.Y.. Structure-based rational design, synthesis and antifungal activity of oxime-containing azole derivatives[J]. Bioorg.Med. Chem.Lett., 2010,20:2942-2945. doi: 10.1016/j.bmcl.2010.03.014

    30. [30]

      Wang W.Y., Wang S.Z., Dong G.Q.. Discovery of highly potent antifungal triazoles by structure-based lead fusion[J]. Med.Chem.Commun., 2011,2:1066-1072. doi: 10.1039/c1md00103e

    31. [31]

      Jiang Z.G., Gu J.L., Wang C., Wang S.. Design, synthesis and antifungalactivity of novel triazole derivatives containing substituted 1, 2, 3-triazole-piperdine side chains[J]. Eur.J.Med.Chem., 2014,82:490-497. doi: 10.1016/j.ejmech.2014.05.079

    32. [32]

      Sheng C.Q., Che X.Y., Wang W.Y.. Design and synthesis of antifungal benzoheterocyclic derivatives by scaffold hopping[J]. Eur.J.Med.Chem., 2011,46:1706-1712. doi: 10.1016/j.ejmech.2011.01.075

    33. [33]

      Wu S.C., Zhang Y.Q., He X.M.. From antidiabetic to antifungal:discovery of highly potent triazole-thiazolidinedione hybrids as novel antifungal agents[J]. ChemMedChem, 2014,9:2639-2646. doi: 10.1002/cmdc.v9.12

    34. [34]

      He X.M., Jiang Y., Zhang Y.Q.. Discovery of highly potent triazoleantifungal agents with piperidine-oxadiazole side chains[J]. Med. Chem.Commun., 2015,6:653-664. doi: 10.1039/C4MD00505H

    35. [35]

      Aher N.G., Pore V.S., Mishra N.N.. Synthesis and antifungal activity of 1, 2, 3-triazole containing fluconazole analogues[J]. Bioorg.Med.Chem.Lett., 2009,19:759-763. doi: 10.1016/j.bmcl.2008.12.026

    36. [36]

      Pore V.S., Aher N.G., Kumarb M., Shukla P.K. Design and synthesis of fluconazole/bile acid conjugate using click reaction[J]. Tetrahedron, 2006,62:11178-11186. doi: 10.1016/j.tet.2006.09.021

    37. [37]

      Yu S.C., Wang N., Chai X.Y.. Synthesis and antifungal activity of the novel triazole derivatives containing 1, 2, 3-triazole fragment[J]. Arch.Pharm.Res., 2013,36:1215-1222. doi: 10.1007/s12272-013-0063-0

    38. [38]

      Okoli I., Coleman J.J., Tampakakis E.. Identification of antifungal compounds active against Candida albicans using an improved high-throughput Caenorhabditis elegans assay[J]. PLoS One, 2009,4e7025. doi: 10.1371/journal.pone.0007025

  • 加载中
    1. [1]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    2. [2]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    3. [3]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    4. [4]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    5. [5]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    6. [6]

      Yu PengYue WangTian-Jiao ChenJing-Jing ChenJin-Ling YangTing GongPing Zhu . A fungal CYP from Beauveria bassiana with promiscuous steroid hydroxylation capabilities. Chinese Chemical Letters, 2024, 35(5): 108818-. doi: 10.1016/j.cclet.2023.108818

    7. [7]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    8. [8]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    9. [9]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    10. [10]

      Ji ZhangTong ZhangQiao AnPeng ZhangCai-Yan TianChun-Mao YuanPing YiZhan-Xing HuXiao-Jiang Hao . Five quinolizidine alkaloids with anti-tobacco mosaic virus activities from two species of Sophora. Chinese Chemical Letters, 2024, 35(6): 108927-. doi: 10.1016/j.cclet.2023.108927

    11. [11]

      Ting LiXinxin ZhengLejing QuYuanyuan OuSai QiaoXue ZhaoYajun ZhangXinfeng ZhaoQian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792

    12. [12]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    13. [13]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    14. [14]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    15. [15]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    16. [16]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    17. [17]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    18. [18]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    19. [19]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    20. [20]

      Shuying LiWeiwei ZhuGeXuan SunChongzhen SunZhaojun LiuChenghe XiongMin XiaoGuofeng Gu . Convergent synthesis and immunological study of oligosaccharide derivatives related to galactomannan from Antrodia cinnamomea. Chinese Chemical Letters, 2024, 35(5): 109089-. doi: 10.1016/j.cclet.2023.109089

Metrics
  • PDF Downloads(1)
  • Abstract views(526)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return