Citation: Fan Jin, Xie Zhi-Hai, Teng Xiao-Xiao, Zhang Yu. Determination of methylene blue by resonance light scattering method using silica nanoparticles as probe[J]. Chinese Chemical Letters, ;2017, 28(5): 1104-1110. doi: 10.1016/j.cclet.2016.11.025 shu

Determination of methylene blue by resonance light scattering method using silica nanoparticles as probe

  • Corresponding author: Xie Zhi-Hai, xiezhihai8@163.com
  • Received Date: 6 October 2016
    Revised Date: 2 November 2016
    Accepted Date: 14 November 2016
    Available Online: 27 May 2016

Figures(10)

  • A simple and novel method was developed to determine methylene blue (MB) by resonance light scattering (RLS) using silica nanoparticles (SiO2NPs) as the probe. It was found that MB could enhance the RLS intensity of SiO2NPs. Moreover, the increase in RLS intensity was linear with the concentration of MB over the range of 0.01-3.0μg mL-1. The limit of detection (LOD) was as low as 4.36 ng mL-1 (3σ) and the relative standard deviation (RSD) was 2.4% (n=6). Under the optimum experimental conditions, this proposed method was successfully applied for the determination of MB in aquaculture samples with recoveries between 96.3% and 107%. Possible mechanisms for the RLS enhancement of SiO2NPs in the presence of MB were also discussed.
  • 加载中
    1. [1]

      Y.J. Xu, X.H. Tian, X.Z. Zhang. Simultaneous determination of malachite green crystal violet, methylene blue and the metabolite residues in aquatic products by ultra-performance liquid chromatography with electrospray ionization tandem mass spectrometry[J]. J. Chromatogr. Sci., 2012,50:591-597. doi: 10.1093/chromsci/bms054

    2. [2]

      A. Asfaram, M. Ghaedi. Simultaneous determination of cationic dyes in water samples with dispersive liquid-liquid microextraction followed by spectrophotometry:experimental design methodology[J]. New J. Chem., 2016,40:4793-4802. doi: 10.1039/C5NJ02912K

    3. [3]

      C. Peter, D. Hongwan, A. Küpfer, B.H. Lauterburg. Pharmacokinetics and organ distribution of intravenous and oral methylene blue[J]. Eur. J. Clin. Pharmacol., 2000,56:247-250. doi: 10.1007/s002280000124

    4. [4]

      S. Memon, F.N. Memon, F. Durmaz. Simultaneous determination of some basic dyes using p-tetranitrocalix[J]. Anal. Methods, 2014,6:7318-7323. doi: 10.1039/C4AY01046A

    5. [5]

      J. Cui, H.S. Yang, J.H. Zhang, G.H. Wu. Determination of methylene blue and its metabolites in aquatic products by UPLC/ESI-MS/MS[J]. South China Fish. Sci., 2013,9:67-73.

    6. [6]

      J.W. Li, F.Q. Zhao, J. Zhao, B.Z. Zeng. Adsorptive and stripping behavior of methylene blue at gold electrodes in the presence of cationic gemini surfactants[J]. Electrochim. Acta, 2005,51:297-303. doi: 10.1016/j.electacta.2005.04.024

    7. [7]

      H. Borwitzky, W.E. Haefeli, J. Burhenne. Analysis of methylene blue in human urine by capillary electrophoresis[J]. J. Chromatogr. B, 2005,826:244-251. doi: 10.1016/j.jchromb.2005.09.013

    8. [8]

      C.L. Fan, Y.M. Huang. Fast determination of methylene blue by chemiluminescence based on permanganate potassium-formaldehyds system[J]. J. Southwest China Normal Univ. (Nat. Sci.), 2005,30:104-107.

    9. [9]

      N. Bélaz-David, L.A. Decosterd, M. Appenzeller. Spectrophotometric determination of methylene blue in biological fluids after ion-pair extraction and evidence of its adsorption on plastic polymers[J]. Eur. J. Pharm. Sci., 1997,5:335-345. doi: 10.1016/S0928-0987(97)00061-4

    10. [10]

      M. Chen, H.H. Cai, F. Yang. Highly sensitive detection of chromium(Ⅲ) ions by resonance Rayleigh scattering enhanced by gold nanoparticles[J]. Spectrochim. Acta A, 2014,118:776-781. doi: 10.1016/j.saa.2013.09.058

    11. [11]

      H.Q. Chen, F.B. Luo, Y. Liu. Application of functional CdS nanoparticles in determination of silver ion by resonance light-scattering technique[J]. Spectrochim. Acta A, 2009,71:1701-1703. doi: 10.1016/j.saa.2008.06.026

    12. [12]

      Q. Li, X.P. Tan, X.B. Zheng, W.W. Tang, J.D. Yang. A novel method for the determination of fast green in grape wine based on resonance Rayleigh scattering[J]. J. Mol. Struct., 2015,1100:14-20. doi: 10.1016/j.molstruc.2015.05.044

    13. [13]

      L. Yu, Y.T. Zhang, R. Chen. A highly sensitive resonance light scattering probe for Alzheimer's amyloid-b peptide based on Fe3O4@Au composites[J]. Talanta, 2015,131:475-479. doi: 10.1016/j.talanta.2014.07.067

    14. [14]

      H.Y. Xiang, K.J. Dai, Q.Z. Luo, W.J. Duan, Y. Xie. A sensitive resveratrol assay with a simple probe methylene blue by resonance light scattering technique[J]. Spectrochim. Acta A, 2011,78:307-312. doi: 10.1016/j.saa.2010.10.011

    15. [15]

      J.T. Liu, Z.F. Liu, X.L. Hu, L. Kong, S.P. Liu. A highly sensitive resonance Rayleigh scattering method for the determination of bleomycinA5 and bleomycinA2 with some halofluorescein dyes[J]. J. Pharm. Biomed. Anal., 2007,43:1452-1459. doi: 10.1016/j.jpba.2006.11.024

    16. [16]

      S.Y. Bi, Y. Wang, H.F. Zhou, T.T. Zhao. Assembly of AuNRs and eugenol for trace analysis of eugenol using resonance light scattering technique[J]. Mater. Sci. Eng., 2016,58:1001-1007. doi: 10.1016/j.msec.2015.09.051

    17. [17]

      Q.M. Lu, Y.Q. He, S.P. Liu, Z.F. Liu. Resonance Rayleigh scattering spectral method for determination of methylene blue with gold nanoparticle as probe[J]. Chem. J. Chin. Univ., 2006,27:849-852.

    18. [18]

      H. Parham, N. Pourreza, F. Marahel. Resonance Rayleigh scattering method for determination of 2-mercaptobenzothiazole using gold nanoparticles probe[J]. Spectrochim. Acta A, 2015,151:308-314. doi: 10.1016/j.saa.2015.06.108

    19. [19]

      H. Parham, N. Pourreza, F. Marahel. Determination of thiram using gold nanoparticles and resonance Rayleigh scattering method[J]. Talanta, 2015,141:143-149. doi: 10.1016/j.talanta.2015.03.061

    20. [20]

      S.Y. Bi, T.J. Wang, Y. Wang, T.T. Zhao, H.F. Zhou. Using gold nanoparticles as probe for detection of salmeterol xinafoate by resonance Rayleigh light scattering[J]. Spectrochim. Acta A, 2015,135:1074-1079. doi: 10.1016/j.saa.2014.08.010

    21. [21]

      H. Parham, S. Saeed. Resonance Rayleigh scattering method for determination of ethion using silver nanoparticles as probe[J]. Talanta, 2015,131:570-576. doi: 10.1016/j.talanta.2014.08.007

    22. [22]

      X.L. Liu, H. Yuan, D.W. Pang, R.X. Cai. Resonance light scattering spectroscopy study of interaction between gold colloid and thiamazole and its analytical application[J]. Spectrochim. Acta A, 2004,60:385-389. doi: 10.1016/S1386-1425(03)00235-X

    23. [23]

      S.P. Liu, Y.Q. He, Z.F. Liu, L. Kong, Q.M. Lu. Resonance Rayleigh scattering spectral method for the determination of raloxifene using gold nanoparticle as a probe[J]. Anal. Chim. Acta, 2007,598:304-311. doi: 10.1016/j.aca.2007.06.054

    24. [24]

      Y.S. Li, Y. Zhang, S.F. Sun, A.Q. Zhang. Yi Liu, Binding investigation on the interaction between methylene blue (MB)/TiO2 nanocomposites and bovine serum albumin by resonance light-scattering (RLS) technique and fluorescence spectroscopy[J]. J. Photochem. Photobiol. B, 2013,128:12-19. doi: 10.1016/j.jphotobiol.2013.07.027

    25. [25]

      A. Hemadi, A. Ekrami, H. Oormazdi. Bioconjugated fluorescent silica nanoparticles for the rapid detection of Entamoeba histolytica[J]. Acta Trop., 2015,145:26-30. doi: 10.1016/j.actatropica.2015.02.008

    26. [26]

      L. Cai, Z.Z. Chen, X.M. Dong, H.W. Tang, D.W. Pang. Silica nanoparticles based label-free aptamer hybridization for ATP detection using hoechst33258 as the signal reporter[J]. Biosens. Bioelectron., 2011,29:46-52. doi: 10.1016/j.bios.2011.07.064

    27. [27]

      N. O'Farrell, A. Houlton, B.R. Horrocks. Silicon nanoparticles:applications in cell biology and medicine[J]. Int. J. Nanomed., 2006,1:451-472. doi: 10.2147/nano.2006.1.issue-4

    28. [28]

      J. Anglister, I.Z. Steinberg. Resonance Rayleigh scattering of cyanine dyes in solution[J]. J. Chem. Phys., 1983,78:5358-5368. doi: 10.1063/1.445489

    29. [29]

      Y. Liu, C.Q. Ma, K.A. Li, F.C. Xie, S.Y. Tong. Rayleigh light scattering study on the reaction of nucleic acids and methyl violet[J]. Anal. Biochem., 1999,268:187-192. doi: 10.1006/abio.1998.3012

    30. [30]

      Chinese Pharmacopoeia Commission, Pharmacopoeia of the People's Republic of China, Part Ⅱ, China Medical Science Press, Beijing, 2015.

  • 加载中
    1. [1]

      Xin LuHaoran SunXiaomeng LiChunrui LiJinfeng WangDandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936

    2. [2]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    3. [3]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

    4. [4]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    5. [5]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    6. [6]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    7. [7]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    8. [8]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    9. [9]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    10. [10]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    11. [11]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    12. [12]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    13. [13]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    14. [14]

      Yuqing DingZhiying YiZhihui WangHongyu ChenYan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918

    15. [15]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    16. [16]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

    17. [17]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    18. [18]

      Ze WangHao LiangAnnan LiuXingchen LiLin GuanLei LiLiang HeAndrew K. WhittakerBai YangQuan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765

    19. [19]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    20. [20]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

Metrics
  • PDF Downloads(1)
  • Abstract views(649)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return