Citation: Liu Meng-Meng, Mei Qiong, Zhang Yi-Xiao, Bai Peng, Guo Xiang-Hai. Palladium-catalyzed amination of chloro-substituted 5-nitropyrimidines with amines[J]. Chinese Chemical Letters, ;2017, 28(3): 583-587. doi: 10.1016/j.cclet.2016.11.019 shu

Palladium-catalyzed amination of chloro-substituted 5-nitropyrimidines with amines

  • Corresponding author: Guo Xiang-Hai, guoxh@tju.edu.cn
  • Received Date: 8 October 2016
    Revised Date: 25 October 2016
    Accepted Date: 31 October 2016
    Available Online: 21 March 2016

Figures(5)

  • A concise and efficient approach was developed for the synthesis of mono-substituted and di-substituted pyrimidines products via palladium-catalyzed amination of chloro-substituted 5-nitropyrimidines and amines. This synthetic methodology can produce various di-substituted pyrimidines in high yields with good functional group tolerance, and provide a complementary tool for the syntheses of important intermediates of nucleosides and purines with bioactivities.
  • 加载中
    1. [1]

      Ohta K., Kawachi E., Inoue N.. Retinoidal pyrimidinecarboxylic acids. Unexpected diaza-substituent effects in retinobenzoic acids[J]. Chem. Pharm. Bull, 2000,48:1504-1513. doi: 10.1248/cpb.48.1504

    2. [2]

      (a) L.M. De Coen, T.S. Heugebaert, D. Garcia, et al., Synthetic entries to and biological activity of pyrrolopyrimidines, Chem. Rev. 116(2016) 80-139;
      (b) A. Palasz, D. Ciez, In search of uracil derivatives as bioactive agents. Uracils and fused uracils:synthesis, biological activity and applications, Eur. J. Med. Chem. 97(2015) 582-611;
      (c) M. Chauhan, R. Kumar, A comprehensive review on bioactive fused heterocycles as purine-utilizing enzymes inhibitors, Med. Chem. Res. 24(2014) 2259-2282.

    3. [3]

      (a) K. Toti, M. Renders, E. Groaz, et al., Nucleosides with transposed base or 4'-hydroxymethyl moieties and their corresponding oligonucleotides, Chem. Rev. 115(2015) 13484-13525;
      (b) Z. Jahnz-Wechmann, G. Framski, P. Januszczyk, J. Boryski, Bioactive fused heterocycles:nucleoside analogs with an additional ring, Eur. J. Med. Chem. 97(2015) 388-396.

    4. [4]

      (a) T. Kamikawa, S. Fujie, Y. Yamagiwa, M. Kim, H. Kawaguchi, Synthesis of clitocine, a new insecticidal nucleoside from the mushroom Clitocybe inversa, J. Chem. Soc. Chem. Commun. (1988) 195-196;
      (b) K. Eger, E.M. Klunder, M. Schmidt, Synthesis of new acyclic pyrimidine nucleoside analogs as potential antiviral drugs, J. Med. Chem. 37(1994) 3057-3061;
      (c) H. Fortin, S. Tomasi, J.G. Delcros, et al., In vivo antitumor activity of clitocine, an exocvclic amino nucleoside isolated from Lepista inversa, ChemMedChem 1(2006) 189-196;
      (d) X.H. Guo, C. Liu, L.X. Zheng, et al., Novel exocyclic nucleoside related to clitocine:a convergent synthesis of 3'-azido-2'3'-dideoxy clitocine, Synlett (2010) 1959-1962;
      (e) X.H. Guo, H. Kang, L.X. Zheng, S.D. Jiang, Synthetic methods and biological activities of clitocine and its analogues, Chin. J. Org. Chem. 31(2011) 176-186;
      (f) J.G. Sun, H. Li, X. Li, et al., Clitocine targets Mcl-1 to induce drug-resistant human cancer cell apoptosis in vitro and tumor growth inhibition in vivo, Apoptosis 19(2014) 871-882.

    5. [5]

      (a) M.M. Baum, I. Butkyavichene, S.A. Churchman, et al., An intravaginal ring for the sustained delivery of tenofovir disoproxil fumarate, Int. J. Pharm. 495(2015) 579-587;
      (b) C. Smit, J. Arends, L. Peters, et al., Effect of abacavir on sustained virologic response to HCV treatment in HIV/HCV co-infected patients, Cohere in Eurocoord, BMC Infect. Dis. 15(2015).

    6. [6]

      (a) T.D. Owens, Preparation of purinone derivatives as tyrosine kinase inhibitors, US20140142099A1, 2014.
      (b) X. Xu, Method for preparing tenofovir intermediate (αR)-6-amino-α-methyl-9H-purine-9-ethanol, CN103408547A, 2013.

    7. [7]

      Read M.L., Braendvang M., Miranda P.O., Gundersen L.L.. Synthesis and biological evaluation of pyrimidine analogs of antimycobacterial purines[J]. Bioorg. Med. Chem., 2010,18:3885-3897. doi: 10.1016/j.bmc.2010.04.035

    8. [8]

      (a) P.G. Baraldi, A.U. Broceta, An efficient one-pot synthesis of 6-alkoxy-8, 9-dialkylpurines via reaction of 5-amino-4-chloro-6-alkylaminopyrimidines with N, N-dimethylalkaneamides and alkoxide ions, Tetrahedron 58(2002) 7607-7611;
      (b) D. Vanda, R. Jorda, B. Lemrova, et al., Synthesis of novel N9-substituted purine derivatives from polymer supported α-amino acids, ACS Comb. Sci. 17(2015) 426-432.

    9. [9]

      (a) D. Banerjee, R.V. Jagadeesh, K. Junge, H. Junge, M. Beller, Efficient and convenient palladium-catalyzed amination of allylic alcohols with Nheterocycles, Angew. Chem. Int. Ed. 51(2012) 11556-11560;
      (b) M. Pompeo, J.L. Farmer, R.D.J. Froese, M.G. Organ, Room-temperature amination of deactivated aniline and aryl halide partners with carbonate base using a Pd-PEPPSI-IPentCl-o-picoline catalyst, Angew. Chem. Int. Ed. 53(2014) 3223-3226;
      (c) S. Sharif, R.P. Rucker, N. Chandrasoma, et al., Selective monoarylation of primary amines using the Pd-PEPPSI-IPentCl precatalyst, Angew. Chem. Int. Ed. 54(2015) 9507-9511;
      (d) S. Riedmueller, O. Kaufhold, H. Spreitzer, B.J. Nachtsheim, Synthesis of sterically congested triarylamines by palladium-catalyzed amination, Eur. J. Org. Chem. (2014) 1391-1394;
      (e) N. Khatun, A. Modi, W. Ali, B.K. Patel, Palladium-catalyzed synthesis of 2-aryl-2H-benzotriazoles from azoarenes and TMSN3, J. Org. Chem. 80(2015) 9662-9670;
      (f) R.A. Green, J.F. Hartwig, Palladium-catalyzed amination of aryl chlorides and bromides with ammonium salts, Org. Lett. 16(2014) 4388-4391;
      (g) H.M. Guo, R.Z. Mao, Q.T. Wang, et al., Pd (Ⅱ)-catalyzed one-pot, three-step route for the synthesis of unsymmetrical acridines, Org. Lett. 15(2013) 5460-5463;
      (h) A. Plas, C. Martin, N. Joubert, M.C. Viaud-Massuard, Palladium-catalyzed amination of N-free 2-chloro-7-azaindole, Org. Lett. 17(2015) 4710-4713.

    10. [10]

      (a) D. Maiti, B.P. Fors, J.L. Henderson, Y. Nakamura, S.L. Buchwald, Palladiumcatalyzed coupling of functionalized primary and secondary amines with aryl and heteroaryl halides:two ligands suffice in most cases, Chem. Sci. 2(2011) 57-68;
      (b) K. Walsh, H.F. Sneddon, C.J. Moody, Amination of heteroaryl chlorides:palladium catalysis or SNAr in green solvents, ChemSusChem 6(2013) 1455-1460.

    11. [11]

      Su M., Hoshiya N.. Buchwald, palladium-catalyzed amination of unprotected five-membered heterocyclic bromides[J]. Org. Lett., 2014,16:832-835. doi: 10.1021/ol4035947

    12. [12]

      (a) C. Fischer, B. Koenig, Palladium-and copper-mediated N aryl bond formation reactions for the synthesis of biological active compounds, Beilstein. J. Org. Chem. 7(2011) 59-74;
      (b) M.D. Charles, P. Schultz, S.L. Buchwald, Efficient Pd-catalyzed amination of heteroaryl halides, Org. Lett. 7(2005) 3965-3968;
      (c) A.A. Trabanco, J.A. Vega, M.A. Fernandez, Fluorous-tagged carbamates for the Pd-catalyzed amination of aryl halides, J. Org. Chem. 72(2007) 8146-8148.

    13. [13]

      (a) Y. Sunesson, E. Lime, S.O. Nilsson Lill, et al., Role of the base in Buchwald-Hartwig amination, J. Org. Chem. 79(2014) 11961-11969;
      (b) A.T. Brusoe, J.F. Hartwig, Palladium-catalyzed arylation of fluoroalkylamines, J. Am. Chem. Soc. 137(2015) 8460-8468;
      (c) A.S. Guram, R.A. Rennels, S.L. Buchwald, A simple catalytic method for the conversion of aryl bromides to arylamines, Angew. Chem. Int. Ed. Engl. 34(1995) 1348-1350.

    14. [14]

      (a) H. Tomori, J.M. Fox, S.L. Buchwald, An improved synthesis of functionalized biphenyl-based phosphine ligands, J. Org. Chem. 65(2000) 5334-5341;
      (b) N. Kataoka, Q. Shelby, J.P. Stambuli, J.F. Hartwig, Air stable, sterically hindered ferrocenyl dialkylphosphines for palladium-catalyzed C C, CN, and CO bond-forming cross-coupling, J. Org. Chem. 67(2002) 5553-5566;
      (c) D.S. Surry, S.L. Buchwald, Biaryl phosphane ligands in palladium-catalyzed amination, Angew. Chem. Int. Ed. 47(2008) 6338-6361.

    15. [15]

      (a) N. Bilbao, V. Vázquez-González, M.T. Aranda, D. González-Rodríguez, Synthesis of 5-/8-halogenated or ethynylated lipophilic nucleobases as potential synthetic intermediates for supramolecular chemistry, Eur. J. Org. Chem. 2015(2015) 7160-7175;
      (b) S. Allu, K.C.K. Swamy, Ruthenium-catalyzed oxidative annulation of 6-anilinopurines with alkynes via C-H activation:synthesis of indolesubstituted purines/purine nucleosides, Adv. Synth. Catal. 357(2015) 2665-2680.

    16. [16]

      Yu X.R., Tang Y., Wang W.J.. Discovery and structure-activity analysis of 4-((5-nitropyrimidine-4-yl) amino) benzimidamide derivatives as novel protein arginine methyltransferase 1(PRMT1) inhibitors[J]. Bioorg. Med. Chem. Lett., 2015,25:5449-5453. doi: 10.1016/j.bmcl.2015.06.095

    17. [17]

      (a) J. Calderon-Arancibia, C. Espinosa-Bustos, A. Canete-Molina, et al., Synthesis and pharmacophore modelling of 2, 6, 9-trisubstituted purine derivatives and their potential role as apoptosis-inducing agents in cancer cell lines, Molecules 20(2015) 6808-6826;
      (b) E. Reznickova, A. Popa, T. Gucky, et al., 2, 6, 9-Trisubstituted purines as CRK3 kinase inhibitors with antileishmanial activity in vitro, Bioorg. Med. Chem. Lett. 25(2015) 2298-2301.

  • 加载中
    1. [1]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    2. [2]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    3. [3]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    6. [6]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    7. [7]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    8. [8]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    9. [9]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    10. [10]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    11. [11]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    12. [12]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    13. [13]

      Jiayuan Liang Xin Mi Songhao Guo Hui Luo Kejun Bu Tonghuan Fu Menglin Duan Yang Wang Qingyang Hu Rengen Xiong Peng Qin Fuqiang Huang Xujie Lü . Pressure-induced emission in 0D metal halide (EATMP)SbBr5 by regulating exciton-phonon coupling. Chinese Journal of Structural Chemistry, 2024, 43(7): 100333-100333. doi: 10.1016/j.cjsc.2024.100333

    14. [14]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    15. [15]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    16. [16]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    17. [17]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    18. [18]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    19. [19]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    20. [20]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

Metrics
  • PDF Downloads(3)
  • Abstract views(780)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return