Citation: Ullah Fateh, Chen Hongzheng, Li Chang-Zhi. Organic functional materials based buffer layers for efficient perovskite solar cells[J]. Chinese Chemical Letters, ;2017, 28(3): 503-511. doi: 10.1016/j.cclet.2016.11.009 shu

Organic functional materials based buffer layers for efficient perovskite solar cells

  • Corresponding author: Li Chang-Zhi, czli@zju.edu.cn
  • Received Date: 28 July 2016
    Revised Date: 4 October 2016
    Accepted Date: 13 October 2016
    Available Online: 11 March 2016

Figures(7)

  • In this review, we highlight the recent development of organic π-functional materials as buffer layers in constructing efficient perovskite solar cells (PVSCs). By following a brief introduction on the PVSC development, device architecture and material design features, we exemplified the exciting progresses made in field by exploiting organic π-functional materials based hole and electron transport layers (HTLs and ETLs) to enable high-performance PVSCs.
  • 加载中
    1. [1]

      Tang C.W.. Two-layer organic photovoltaic cell[J]. Appl. Phys. Lett., 1986,48:183-185. doi: 10.1063/1.96937

    2. [2]

      Yu G., Gao J., Hummelen J.C., Wudl F., Heeger A.J.. Polymer photovoltaic cells:enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science, 1995,270:1789-1791. doi: 10.1126/science.270.5243.1789

    3. [3]

      O'Regan B., Grätzel M.. A low-cost, high-efficiency solar cell based on dyesensitized colloidal TiO2 films[J]. Nature, 1991,353:737-740. doi: 10.1038/353737a0

    4. [4]

      Mathew S., Yella A., Gao P.. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers[J]. Nat. Chem., 2014,6:242-247. doi: 10.1038/nchem.1861

    5. [5]

      You J.B., Dou L.T., Yoshimura K.. A polymer tandem solar cell with 10.6% power conversion efficiency[J]. Nat. Commun., 2013,41446. doi: 10.1038/ncomms2411

    6. [6]

      Zhao J.B., Li Y.K., Yang G.F.. Efficient organic solar cells processed from hydrocarbon solvents[J]. Nat. Energy, 2016,115027. doi: 10.1038/nenergy.2015.27

    7. [7]

      Zhao W.C., Qian D.P., Zhang S.Q.. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability[J]. Adv. Mater., 2016,28:4734-4739. doi: 10.1002/adma.v28.23

    8. [8]

      Kojima A., Teshima K., Shirai Y., Miyasaka T.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009,131:6050-6051. doi: 10.1021/ja809598r

    9. [9]

      Im J.H., Lee C.R., Lee J.W., Park S.W., Park N.G.. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011,3:4088-4093. doi: 10.1039/c1nr10867k

    10. [10]

      Kim H.S., Lee C.R., Im J.H.. Lead iodide perovskite sensitized all-solidstate submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci. Rep., 2012,2591.

    11. [11]

      Zhang J., Hua Y., Xu B.. The role of 3D molecular structural control in new hole transport materials outperforming spiro-OMeTAD in perovskite solar cells[J]. Adv. Energy Mater., 2016,61601062. doi: 10.1002/aenm.201601062

    12. [12]

      Frost J.M., Walsh A.. What is moving in hybrid halide perovskite solar cells?[J]. Accounts Chem. Res., 2016,49:528-535. doi: 10.1021/acs.accounts.5b00431

    13. [13]

      Lee M.M., Teuscher J., Miyasaka T., Murakami T.N., Snaith H.J.. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012,338:643-647. doi: 10.1126/science.1228604

    14. [14]

      Ball J.M., Lee M.M., Hey A., Snaith H.J.. Low-temperature processed mesosuperstructured to thin-film perovskite solar cells[J]. Energy Environ. Sci., 2013,6:1739-1743. doi: 10.1039/c3ee40810h

    15. [15]

      Burschka J., Pellet N., Moon S.J.. Sequential deposition as a route to highperformance perovskite-sensitized solar cells[J]. Nature, 2013,499:316-319. doi: 10.1038/nature12340

    16. [16]

      Liu M.Z., Johnston M.B., Snaith H.J.. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013,501:395-398. doi: 10.1038/nature12509

    17. [17]

      Jeon N.J., Lee H.G., Kim Y.C.. o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells[J]. J. Am. Chem. Soc., 2014,136:7837-7840. doi: 10.1021/ja502824c

    18. [18]

      Park N.G.. Perovskite solar cells:an emerging photovoltaic technology[J]. Mater. Today, 2015,18:65-72. doi: 10.1016/j.mattod.2014.07.007

    19. [19]

      Zhou H.P., Chen Q., Li G.. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014,345:542-546. doi: 10.1126/science.1254050

    20. [20]

      Yang W.S., Noh J.H., Jeon N.J.. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015,348:1234-1237. doi: 10.1126/science.aaa9272

    21. [21]

      Kim H., Lim K.G., Lee T.W.. Planar heterojunction organometal halide perovskite solar cells:roles of interfacial layers[J]. Energy Environ. Sci., 2016,9:12-30. doi: 10.1039/C5EE02194D

    22. [22]

      Li C.Z., Yip H.L., Jen A.K.Y.. Functional fullerenes for organic photovoltaics[J]. J. Mater. Chem., 2012,22:4161-4177. doi: 10.1039/c2jm15126j

    23. [23]

      Yip H.L., Jen A.K.Y.. Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells[J]. Energy Environ. Sci., 2012,5:5994-6011. doi: 10.1039/c2ee02806a

    24. [24]

      Chueh C.C., Li C.Z., Jen A.K.Y.. Recent progress and perspective in solutionprocessed interfacial materials for efficient and stable polymer and organometal perovskite solar cells[J]. Energy Environ. Sci., 2015,8:1160-1189. doi: 10.1039/C4EE03824J

    25. [25]

      Dong Q.F., Fang Y.J., Shao Y.C.. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015,347:967-970. doi: 10.1126/science.aaa5760

    26. [26]

      Hou J.H., Chen H.Y., Zhang S.Q., Li G., Yang Y.. Synthesis characterization, and photovoltaic properties of a low band gap polymer based on silolecontaining polythiophenes and 2, 1, 3-benzothiadiazole[J]. J. Am. Chem. Soc., 2008,130:16144-16145. doi: 10.1021/ja806687u

    27. [27]

      Huang Z.T., Xue G.B., Wu J.K.. Electron transport in solution-grown TIPSpentacene single crystals:effects of gate dielectrics and polar impurities[J]. Chin. Chem. Lett., 2016. doi: 10.1016/j.cclet.2016.05.016(inpress)

    28. [28]

      Huang Z.T., Fan C.C., Xue G.B.. Solution-grown aligned crystals of diketopyrrolopyrroles (DPP)-based small molecules:rough surfaces and relatively low charge mobility[J]. Chin. Chem. Lett., 2016,27:523-526. doi: 10.1016/j.cclet.2016.01.054

    29. [29]

      Lin Q.Q., Armin A., Nagiri R.C.R., Burn P.L., Meredith P.. Electro-optics of perovskite solar cells[J]. Nat. Photonics, 2015,9:106-112.

    30. [30]

      Liu T.H., Chen K., Hu Q., Zhu R., Gong Q.H.. Inverted perovskite solar cells:progresses and perspectives[J]. Adv. Energy Mater., 2016,61600457. doi: 10.1002/aenm.v6.17

    31. [31]

      Blom P.W.M., Mihailetchi V.D., Koster L.J.A., Markov D.E.. Device physics of polymer:fullerene bulk heterojunction solar cells[J]. Adv. Mater., 2007,19:1551-1566. doi: 10.1002/(ISSN)1521-4095

    32. [32]

      Braun S., Salaneck W.R., Fahlman M.. Energy-level alignment at organic/metal and organic/organic interfaces[J]. Adv. Mater., 2009,21:1450-1472. doi: 10.1002/adma.v21:14/15

    33. [33]

      Potscavage Jr. W.J., Sharma A., Kippelen B.. Critical interfaces in organic solar cells and their influence on the open-circuit voltage[J]. Acc. Chem. Res., 2009,42:1758-1767. doi: 10.1021/ar900139v

    34. [34]

      Ratcliff E.L., Zacher B., Armstrong N.R.. Selective interlayers and contacts in organic photovoltaic cells[J]. J. Phys. Chem. Lett., 2011,2:1337-1350. doi: 10.1021/jz2002259

    35. [35]

      Huang C.Y., Fu W.F., Li C.Z.. Dopant-free hole-transporting material with a C3h symmetrical truxene core for highly efficient perovskite solar cells[J]. J. Am. Chem. Soc., 2016,138:2528-2531. doi: 10.1021/jacs.6b00039

    36. [36]

      Bi C., Wang Q., Shao Y.C.. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells[J]. Nat. Commun., 2015,67747. doi: 10.1038/ncomms8747

    37. [37]

      Werner A., Li F., Harada K.. n-Type doping of organic thin films using cationic dyes[J]. Adv. Funct. Mater., 2004,14:255-260. doi: 10.1002/(ISSN)1616-3028

    38. [38]

      Shao Y.C., Fang Y.J., Li T.. Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films[J]. Energy Environ. Sci., 2016,9:1752-1759. doi: 10.1039/C6EE00413J

    39. [39]

      de Quilettes D.W., Vorpahl S.M., Stranks S.D.. Impact of microstructure on local carrier lifetime in perovskite solar cells[J]. Science, 2015,348:683-686. doi: 10.1126/science.aaa5333

    40. [40]

      Kan B., Li M.M., Zhang Q.. A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency[J]. J. Am. Chem. Soc., 2015,137:3886-3893. doi: 10.1021/jacs.5b00305

    41. [41]

      Jeon N.J., Noh J.H., Yang W.S.. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015,517:476-480. doi: 10.1038/nature14133

    42. [42]

      Ryu S., Noh J.H., Jeon N.J.. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor[J]. Energy Environ. Sci., 2014,7:2614-2618. doi: 10.1039/C4EE00762J

    43. [43]

      Tong X., Lin F., Wu J., Wang Z.M.. High performance perovskite solar cells[J]. Adv. Sci., 2016,31500201. doi: 10.1002/advs.201500201

    44. [44]

      Susrutha B., Giribabu L., Singh S.P.. Recent advances in flexible perovskite solar cells[J]. Chem. Commun., 2015,51:14696-14707. doi: 10.1039/C5CC03666F

    45. [45]

      Liu D.Y., Kelly T.L.. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J]. Nat. Photonics, 2014,8:133-138.

    46. [46]

      Huang F.Z., Dkhissi Y., Huang W.C.. Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells[J]. Nano Energy, 2014,10:10-18. doi: 10.1016/j.nanoen.2014.08.015

    47. [47]

      Bi D., Tress W., Dar M.I.. Efficient luminescent solar cells based on tailored mixed-cation perovskites[J]. Sci. Adv., 2016,2e1501170. doi: 10.1126/sciadv.1501170

    48. [48]

      Liu T.H., Chen K., Hu Q.. Fast-growing procedure for perovskite films in planar heterojunction perovskite solar cells[J]. Chin. Chem. Lett., 2015,26:1518-1521. doi: 10.1016/j.cclet.2015.09.022

    49. [49]

      Saliba M., Matsui T., Seo J.Y.. Cesium-containing triple cation perovskite solar cells:improved stability, reproducibility and high efficiency[J]. Energy Environ. Sci., 2016,9:1989-1997. doi: 10.1039/C5EE03874J

    50. [50]

      Mun J.W., Cho I., Lee D.. Acetylene-bridged D-A-D type small molecule comprising pyrene and diketopyrrolopyrrole for high efficiency organic solar cells[J]. Org. Electron., 2013,14:2341-2347. doi: 10.1016/j.orgel.2013.05.035

    51. [51]

      Li H., Fu K., Hagfeldt A.. A simple 3, 4-ethylenedioxythiophene based hole-transporting material for perovskite solar cells[J]. Angew. Chem. Int. Ed., 2014,53:4085-4088. doi: 10.1002/anie.201310877

    52. [52]

      Li H.R., Fu K.W., Boix P.P.. Hole-transporting small molecules based on thiophene cores for high efficiency perovskite solar cells[J]. ChemSusChem, 2014,7:3420-3425. doi: 10.1002/cssc.v7.12

    53. [53]

      Do K., Choi H., Lim K.. Star-shaped hole transporting materials with a triazine unit for efficient perovskite solar cells[J]. Chem. Commun., 2014,50:10971-10974. doi: 10.1039/C4CC04550E

    54. [54]

      Saliba M., Orlandi S., Matsui T.. A molecularly engineered holetransporting material for efficient perovskite solar cells[J]. Nat. Energy, 2016,115017. doi: 10.1038/nenergy.2015.17

    55. [55]

      Wang Y.K., Yuan Z.C., Shi G.Z.. Dopant-free spiro-triphenylamine/fluorene as hole-transporting material for perovskite solar cells with enhanced efficiency and stability[J]. Adv. Funct. Mater., 2016,26:1375-1381. doi: 10.1002/adfm.v26.9

    56. [56]

      Bi D.Q., Xu B., Gao P.. Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%[J]. Nano Energy, 2016,23:138-144. doi: 10.1016/j.nanoen.2016.03.020

    57. [57]

      Molina-Ontoria A., Zimmermann I., Garcia-Benito I.. Benzotrithiophene-based hole-transporting materials for 18.2% perovskite solar cells[J]. Angew. Chem. Int. Ed., 2016,55:6270-6274. doi: 10.1002/anie.201511877

    58. [58]

      Xu B., Bi D.Q., Hua Y.. A low-cost spiro[J]. Energy Environ. Sci., 2016,9:873-877. doi: 10.1039/C6EE00056H

    59. [59]

      Malinauskas T., Saliba M., Matsui T.. Branched methoxydiphenylaminesubstituted fluorene derivatives as hole transporting materials for highperformance perovskite solar cells[J]. Energy Environ. Sci., 2016,9:1681-1686. doi: 10.1039/C5EE03911H

    60. [60]

      Choi H., Paek S., Lim N.. Efficient perovskite solar cells with 13.63% efficiency based on planar triphenylamine hole conductors[J]. Chemistry, 2014,20:10894-10899. doi: 10.1002/chem.201403807

    61. [61]

      Choi H., Park S., Paek S.. Efficient star-shaped hole transporting materials with diphenylethenyl side arms for an efficient perovskite solar cell[J]. J. Mater. Chem. A, 2014,2:19136-19140. doi: 10.1039/C4TA04179H

    62. [62]

      Rakstys K., Abate A., Dar M.I.. Triazatruxene-based hole transporting materials for highly efficient perovskite solar cells[J]. J. Am. Chem. Soc., 2015,137:16172-16178. doi: 10.1021/jacs.5b11076

    63. [63]

      Nishimura H., Ishida N., Shimazaki A.. Hole-transporting materials with a two-dimensionallyexpanded π-system around an azulenecoreforefficient perovskite solar cells[J]. J. Am. Chem. Soc., 2015,137:15656-15659. doi: 10.1021/jacs.5b11008

    64. [64]

      Lv S.T., Han L.Y., Xiao J.Y.. Mesoscopic TiO2/CH3NH3PbI3 perovskite solar cells with new hole-transporting materials containing butadiene derivatives[J]. Chem. Commun., 2014,50:6931-6934. doi: 10.1039/c4cc02211d

    65. [65]

      Song Y.K., Lv S.T., Liu X.C.. Energy level tuning of TPB-based holetransporting materials for highly efficient perovskite solar cells[J]. Chem. Commun., 2014,50:15239-15242. doi: 10.1039/C4CC06493C

    66. [66]

      Eperon V.M., Burlakov P., Docampo A.. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells[J]. Adv. Funct. Mater., 2014,24:151-157. doi: 10.1002/adfm.v24.1

    67. [67]

      Cheng M., Xu B., Chen C.. Phenoxazine-based small molecule material for efficient perovskite solar cells and bulk heterojunction organic solar cells[J]. Adv. Energy Mater., 2015,51401720. doi: 10.1002/aenm.201401720

    68. [68]

      Liu Y.S., Hong Z.R., Chen Q., al et. Perovskite solarcells employingdopant-free organic hole transport materials with tunable energy levels[J]. Adv. Mater., 2016,28:440-446. doi: 10.1002/adma.v28.3

    69. [69]

      Liu Y.S., Chen Q., Duan H.S.. A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells[J]. J. Mater. Chem. A, 2015,3:11940-11947. doi: 10.1039/C5TA02502H

    70. [70]

      Reddy S.S., Gunasekar K., Heo J.H.. Highly efficient organic hole transporting materials for perovskite and organic solar cells with long-term stability[J]. Adv. Mater., 2016,28:686-693. doi: 10.1002/adma.201503729

    71. [71]

      Hua Y., Xu B., Liu P.. High conductivity Ag-based metal organic complexes as dopant-free hole-transport materials for perovskite solar cells with high fill factors[J]. Chem. Sci., 2016,7:2633-2638. doi: 10.1039/C5SC03569D

    72. [72]

      Zhang J.B., Xu B., Johansson M.B.. Constructive effects of alkyl chains:a strategy to design simple and non-spiro hole transporting materials for highefficiency mixed-ion perovskite solar cells[J]. Adv. Energy Mater., 2016,61502536. doi: 10.1002/aenm.201502536

    73. [73]

      Zhang F., Yi C.Y., Wei P.. A novel dopant-free triphenylamine based molecular "butterfly" hole-transport material for highly efficient and stable perovskite solar cells[J]. Adv. Energy Mater., 2016,61600401. doi: 10.1002/aenm.201600401

    74. [74]

      Liang P.W., Liao C.Y., Chueh C.C.. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells[J]. Adv. Mater., 2014,26:3748-3754. doi: 10.1002/adma.v26.22

    75. [75]

      Malinkiewicz O., Yella A., Lee Y.H.. Perovskite solar cells employing organic charge-transport layers[J]. Nat. Photonics, 2014,8:128-132.

    76. [76]

      Sun S.Y., Salim T., Mathews N.. The origin of high efficiency in lowtemperature solution-processable bilayer organometal halide hybrid solar cells[J]. Energy Environ. Sci., 2014,7:399-407. doi: 10.1039/C3EE43161D

    77. [77]

      Docampo P., Ball J.M., Darwich M., Eperon G.E., Snaith H.J.. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates[J]. Nat. Commun., 2013,42761.

    78. [78]

      Xiao Z.G., Bi C., Shao Y.C.. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers[J]. Energy Environ. Sci., 2014,7:2619-2623. doi: 10.1039/C4EE01138D

    79. [79]

      Nie W.Y., Tsai H., Asadpour R.. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains[J]. Science, 2015,347:522-525. doi: 10.1126/science.aaa0472

    80. [80]

      Heo J.H., Han H.J., Kim D., Ahn T.K., Im S.H.. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solarcells with 18.1% powerconversion efficiency[J]. Energy Environ. Sci., 2015,8:1602-1608. doi: 10.1039/C5EE00120J

    81. [81]

      Guo Y.L., Liu C., Inoue K.. Enhancement in the efficiency of an organicinorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer[J]. J. Mater. Chem. A, 2014,2:13827-13830. doi: 10.1039/C4TA02976C

    82. [82]

      Xue Q.F., Chen G.T., Liu M.Y.. Improving filmformation and photovoltage of highly efficient inverted-type perovskite solar cells through the incorporation of new polymeric hole selective layers[J]. Adv. Energy Mater., 2016,61502021. doi: 10.1002/aenm.201502021

    83. [83]

      Zhao D.W., Sexton M., Park H.Y.. High-efficiency solution-processed planar perovskite solar cells with a polymer hole transport layer[J]. Adv. Energy Mater., 2015,51401855. doi: 10.1002/aenm.201401855

    84. [84]

      Kim G.W., Kim J., Lee G.Y.. A strategy to design a donor-π-acceptor polymeric hole conductor for an efficient perovskite solar cell[J]. Adv. Energy Mater., 2015,51500471. doi: 10.1002/aenm.201500471

    85. [85]

      Jo J.W., Seo M.S., Park M.. Improving performance and stability of flexible planar-heterojunction perovskite solar cells using polymeric holetransport material[J]. Adv. Funct. Mater., 2016,26:4464-4471. doi: 10.1002/adfm.v26.25

    86. [86]

      Jeon N.J., Lee J., Noh J.H.. Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials[J]. J. Am. Chem. Soc., 2013,135:19087-19090. doi: 10.1021/ja410659k

    87. [87]

      Sung S.D., Kang M.S., Choi I.T.. 14.8% perovskite solar cells employing carbazole derivatives as hole transporting materials[J]. Chem. Commun., 2014,50:14161-14163. doi: 10.1039/C4CC06716A

    88. [88]

      Xue Q.F., Hu Z.C., Liu J.. Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an aminofunctionalized polymer interlayer[J]. J. Mater. Chem. A, 2014,2:19598-19603. doi: 10.1039/C4TA05352D

    89. [89]

      Sun C., Wu Z.H., Yip H.L.. Amino-functionalized conjugated polymer as an efficient electron transport layer for high-performance planarheterojunction perovskite solar cells[J]. Adv. Energy Mater., 2016,61501534. doi: 10.1002/aenm.201501534

    90. [90]

      Zhao D.B., Zhu Z.L., Kuo M.Y., Chueh C.C., Jen A.K.Y.. Hexaazatrinaphthylene derivatives:efficient electron-transporting materials with tunable energy levels for inverted perovskite solar cells[J]. Angew. Chem. Int. Ed., 2016,55:8999-9003. doi: 10.1002/anie.201604399

    91. [91]

      Wojciechowski K., Leijtens T., Siprova S.. C60 as an efficient n-type compact layer in perovskite solar cells[J]. J. Phys. Chem. Lett., 2015,6:2399-2405. doi: 10.1021/acs.jpclett.5b00902

    92. [92]

      Zhu Z.L., Chueh C.C., Lin F., Jen A.K.Y.. Enhanced ambient stability of efficient perovskite solar cells by employing a modified fullerene cathode interlayer[J]. Adv. Sci., 2016,3. doi: 10.1002/advs.201600027

    93. [93]

      Liang P.W., Chueh C.C., Williams S.T., Jen A.K.Y.. Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thinfilm solar cells[J]. Adv. Energy Mater., 2015,5. doi: 10.1002/aenm.201402321

    94. [94]

      Grancini G., Santosh Kumar R.S., Abrusci A.. Boosting infrared light harvesting by molecular functionalization of metal oxide/polymer interfaces in efficient hybrid solar cells[J]. Adv. Funct. Mater., 2012,22:2160-2166. doi: 10.1002/adfm.201102360

    95. [95]

      Wojciechowski K., Stranks S.D., Abate A.. Heterojunction modification for highly efficient organic-inorganic perovskite solar cells[J]. ACS Nano, 2014,8:12701-12709. doi: 10.1021/nn505723h

    96. [96]

      Li C.Z., Huang J., Ju H.. Modulate organic-metal oxide heterojunction via[1, 6] azafulleroid for highly efficient organic solar cells[J]. Adv. Mater., 2016,28:7269-7275. doi: 10.1002/adma.201601161

    97. [97]

      Abrusci A., Stranks S.D., Docampo P.. High-performance perovskitepolymer hybrid solar cells via electronic coupling with fullerene monolayers[J]. Nano Lett., 2013,13:3124-3128. doi: 10.1021/nl401044q

    98. [98]

      Liu X.D., Lei M., Zhou Y., Song B., Li Y.F.. High performance planar p-i-n perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers[J]. Appl. Phys. Lett., 2015,107063901. doi: 10.1063/1.4928535

    99. [99]

      Li Y.W., Zhao Y., Chen Q.. Multifunctional fullerene derivative for interface engineering in perovskite solar cells[J]. J. Am. Chem. Soc., 2015,137:15540-15547. doi: 10.1021/jacs.5b10614

    100. [100]

      Li C.Z., Liang P.W., Sulas D.B.. Modulation of hybrid organic-perovskite photovoltaic performance by controlling the excited dynamics of fullerenes[J]. Mater. Horiz., 2015,2:414-419. doi: 10.1039/C5MH00026B

    101. [101]

      Yoon H., Kang S.M., Lee J.K., Choi M.. Hysteresis-free low-temperatureprocessed planar perovskite solar cells with 19.1% efficiency[J]. Energy Environ. Sci., 2016,9:2262-2266. doi: 10.1039/C6EE01037G

    102. [102]

      Shao S.Y., Abdu-Aguye M., Qiu L.. Elimination of the light soaking effect and performance enhancement in perovskite solar cells using a fullerene derivative[J]. Energy Environ. Sci., 2016,9:2444-2452. doi: 10.1039/C6EE01337F

    103. [103]

      Anaraki E.H., Kermanpur A., Steier L.. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide[J]. Energy Environ. Sci., 2016,9:3128-3134. doi: 10.1039/C6EE02390H

    104. [104]

      Li Y.B., Cooper J.K., Liu W.J.. Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells[J]. Nat. Commun., 2016,712446. doi: 10.1038/ncomms12446

    105. [105]

      Giordano F., Abate A., Baena J.P.C.. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solarcells[J]. Nat. Commun., 2016,710379. doi: 10.1038/ncomms10379

    106. [106]

      Docampo P., Ball J.M., Darwich M., Eperon G.E., Snaith H.J.. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates[J]. Nat. Commun., 2013,42761.

  • 加载中
    1. [1]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    2. [2]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    3. [3]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    4. [4]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    5. [5]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    6. [6]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    7. [7]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    8. [8]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

    9. [9]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    10. [10]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    11. [11]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    12. [12]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    13. [13]

      Yinglan YuSajid HussainJianping QiLei LuoXuemei Zhang . Mechanisms and applications: Cargos transport to basolateral membranes in polarized epithelial cells. Chinese Chemical Letters, 2024, 35(12): 109673-. doi: 10.1016/j.cclet.2024.109673

    14. [14]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    15. [15]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    16. [16]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    17. [17]

      Zhiyang ZhangYi ChenYingnan ZhangChuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083

    18. [18]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    19. [19]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    20. [20]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

Metrics
  • PDF Downloads(5)
  • Abstract views(734)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return