Citation: Jin Xin, Cramer Jacob R., Chen Qi-Wei, Liang Hai-Lin, Shang Jian, Shao Xiang, Chen Wei, Xu Guo-Qin, Gothelf Kurt V., Wu Kai. Pinning-down molecules in their self-assemblies with multiple weak hydrogen bonds of C-H…F and C-H…N[J]. Chinese Chemical Letters, ;2017, 28(3): 525-530. doi: 10.1016/j.cclet.2016.11.007 shu

Pinning-down molecules in their self-assemblies with multiple weak hydrogen bonds of C-H…F and C-H…N

  • Corresponding author: Gothelf Kurt V., kvg@chem.au.dk Wu Kai, kaiwu@pku.edu.cn
  • Received Date: 15 June 2016
    Revised Date: 28 October 2016
    Accepted Date: 28 October 2016
    Available Online: 9 March 2016

Figures(5)

  • Two-dimensional self-assemblies of four partially fluorinated molecules, 1, 4-bis (2, 6-difluoropyridin-4-yl) benzene, 4, 4'-bis (2, 6-difluoropyridin-4-yl)-1, 1'-biphenyl, 4, 4'-bis (2, 6-difluoropyridin-4-yl)-1, 1':4', 1"-terphenyl and 4, 4'-bis (2, 6-difluoropyridin-3-yl)-1, 1'-biphenyl, involving weak intermolecular C-H…F and C-H…N hydrogen bonds were systematically investigated on Au (111) with low-temperature scanning tunneling microscopy. The inter-molecular connecting modes and binding sites were closely related to the backbones of the building blocks, i.e., the molecule length determines its binding sites with neighboring molecules in the assemblies while the attaching positions of the N and F atoms dictate its approaching and docking angles. The experimental results demonstrate that multiple weak hydrogen bonds such as C-H…F and C-H…N can be efficiently applied to tune the molecular orientations and the self-assembly structures accordingly.
  • 加载中
    1. [1]

      Cicoira F., Santato C., Rosei F.. Two-dimensional nanotemplates as surface cues for the controlled assembly of organic molecules[J]. Top. Curr. Chem., 2008,285:203-267. doi: 10.1007/978-3-540-78395-4

    2. [2]

      Kudernac T., Lei S., Elemans J.A.A.W., De Feyter S.. Two-dimensional supramolecular self-assembly:nanoporous networks on surfaces[J]. Chem. Soc. Rev., 2009,38:402-421. doi: 10.1039/B708902N

    3. [3]

      Liang H.L., He Y., Ye Y.C.. Two-dimensional molecular porous networks constructed by surface assembling[J]. Coord. Chem. Rev., 2009,253:2959-2979. doi: 10.1016/j.ccr.2009.07.028

    4. [4]

      He Y.C., Sun W., Wang Y.. A unified model:self-assembly of trimesic acid on gold[J]. J. Phys. Chem. C, 2007,111:10138-10141. doi: 10.1021/jp072726o

    5. [5]

      Theobald J.A., Oxtoby N.S., Phillips M.A., Champness N.R., Beton P.H.. Controlling molecular deposition and layer structure with supramolecular surface assemblies[J]. Nature, 2003,424:1029-1031. doi: 10.1038/nature01915

    6. [6]

      Otero R., Xu W., Lukas M.. Specificity of[102_TD$DIF]Watson-Crick base pairing on a solid surface studied at the atomic scale[J]. Angew. Chem. Int. Ed. Engl., 2008,47:9673-9676. doi: 10.1002/anie.v47:50

    7. [7]

      Kannappan K., Werblowsky T.L., Rim K.T., Berne B.J., Flynn G.W.. An experimental and theoretical study of the formation of nanostructures of self-assembled cyanuric acid through hydrogen bond networks on graphite[J]. J. Phys. Chem. B, 2007,111:6634-6642. doi: 10.1021/jp0706984

    8. [8]

      Xu W., Wang J.G., Jacobsen M.F.. Supramolecular porous network formed by molecular recognition between chemically modified nucleobases guanine and cytosine[J]. Angew. Chem. Int. Ed. Engl., 2010,49:9373-9377. doi: 10.1002/anie.201003390

    9. [9]

      Staniec P.A., Perdigao M.A., Saywell A., Champness N.P., Beton P.H.. Hierarchical organisation on a two-dimensional supramolecular network[J]. ChemPhysChem, 2007,8:2177-2181. doi: 10.1002/(ISSN)1439-7641

    10. [10]

      Kampschulte L., Werblowsky T.L., Kishore R.S.K.. Thermodynamical equilibrium of binary supramolecular networks at the liquid-solid interface[J]. J. Am. Chem. Soc., 2008,130:8502-8507. doi: 10.1021/ja801883t

    11. [11]

      Vishweshwar P., Nangia A., Lynch V.M.. Recurrence of carboxylic acid-pyridine supramolecular synthon in the crystal structures of some pyrazinecarboxylic acids[J]. J. Org. Chem., 2002,67:556-565. doi: 10.1021/jo0162484

    12. [12]

      Prins L.J., Reinhoudt D.N., Timmerman P.. Noncovalent synthesis using hydrogen bonding[J]. Angew. Chem. Int. Ed. Engl., 2001,40:2382-2426. doi: 10.1002/(ISSN)1521-3773

    13. [13]

      Castellano R.K.. Progress toward understanding the nature and function of C-H center dot center dot center dot O interactions[J]. Curr. Org. Chem., 2004,8:845-865. doi: 10.2174/1385272043370384

    14. [14]

      Lehn J.M.. Toward self-organization and complex matter[J]. Science, 2002,295:2400-2403. doi: 10.1126/science.1071063

    15. [15]

      Liang H.L., Sun W., Jin X.. Two-dimensional molecular porous networks formed by trimesic acid and 4, 4'-bis (4-pyridyl) biphenyl on Au (111) through hierarchical hydrogen bonds:structural systematics and control of nanopore size and shape[J]. Angew. Chem. Int. Ed. Engl., 2011,5:7562-7566.

    16. [16]

      Pawin G., Wong K.L., Kwon K.Y., Bartels L.. A homomolecular porousnetworkat a Cu (111) surface[J]. Science, 2006,313:961-962. doi: 10.1126/science.1129309

    17. [17]

      Kampschulte L., Griessl S., Heckl W.M., Lackinger M.. Mediated coadsorption at the liquid-solid interface:stabilization through hydrogen bonds[J]. J. Phys.Chem. B, 2005,109:14074-14078. doi: 10.1021/jp050794+

    18. [18]

      Meier C., Ziener U., Landfester K., Weihrich P.. Weak hydrogen bonds as a structural motif for two-dimensional assemblies of oligopyridines on highly oriented pyrolytic graphite:an STM investigation[J]. J. Phys. Chem. B, 2005,109:21015-21027. doi: 10.1021/jp054271d

    19. [19]

      Zhang J., Li B., Cui X.F.. Spontaneous chiral resolution in supramolecular assembly of 2, 4, 6-tris (2-pyridyl)-1, 3, 5-triazine on Au (111)[J]. J. Am. Chem. Soc., 2009,131:5885-5890. doi: 10.1021/ja9001986

    20. [20]

      Yang J.L., Schumann S., Hatton R.A., Jones T.S.. Copper hexadecafluorophthalocyanine (F16CuPc) as an electron accepting material in bilayer small molecule organic photovoltaic cells[J]. Org. Electron., 2010,11:1399-1402. doi: 10.1016/j.orgel.2010.06.004

    21. [21]

      Jiang X.X., Dai J.G., Wang H.B., Geng Y.H., Yan D.H.. Organic photovoltaic cells using hexadecafluorophthalocyaninatocopper (F16CuPc) as electron acceptor material[J]. Chem. Phys. Lett., 2007,446:329-332. doi: 10.1016/j.cplett.2007.08.042

    22. [22]

      Dai J.G., Jiang X.X., Wang H.B., Yang D.H.. Organic photovoltaic cell employing organic heterojunction as buffer layer[J]. Thin Solid Films, 2008,516:3320-3323. doi: 10.1016/j.tsf.2007.09.043

    23. [23]

      Bao Z.N., Lovinger A.J., Brown J.. New air-stable n-channel organic thin film transistors[J]. J. Am. Chem. Soc., 1998,120:207-208. doi: 10.1021/ja9727629

    24. [24]

      Gerlach A., Schreiber F., Sellner S.. Adsorption-induced distortion of F16CuPc on Cu (111) and Ag (111):an[103_TD$DIF]X-ray standing wave study[J]. Phys. Rev. B, 2005,71205425. doi: 10.1103/PhysRevB.71.205425

    25. [25]

      de Oteyza D.G., El-Sayed A., Garcia-Lastra J.M.. Copper-phthalocyanine based metal-organic interfaces:the effectof fluorination, the substrate, and its symmetry[J]. J. Chem. Phys., 2010,133214703. doi: 10.1063/1.3509394

    26. [26]

      Wakayama Y.. Assembly process and epitaxy of the F16CuPc monolayer on Cu (111)[J]. J. Phys. Chem. C, 2007,111:2675-2678.

    27. [27]

      Wakayama Y., de Oteyza D.G., Garcia-Lastra J.M., Mowbray D.J.. Solid-state reactions in binary molecular assemblies of F16CuPc and pentacene[J]. ACS Nano, 2011,5:581-589. doi: 10.1021/nn102887x

    28. [28]

      de Oteyza D.G., García-Lastra J.M., Corso M.. Customized electronic coupling in self-assembled donor-acceptor nanostructures[J]. Adv. Funct. Mater., 2009,19:3567-3573. doi: 10.1002/adfm.v19:22

    29. [29]

      Barrena E., de Oteyza D.G., Dosch H., Wakayama Y.. 2D supramolecular selfassembly of binary organic monolayers[J]. ChemPhysChem, 2007,8:1915-1918. doi: 10.1002/(ISSN)1439-7641

    30. [30]

      de Oteyza D.G., Silanes I., Ruiz-Osés M.. Balancing intermolecular and molecule-substrate interactions in supramolecular assemblies[J]. Adv. Funct. Mater., 2009,19:259-264. doi: 10.1002/adfm.v19:2

    31. [31]

      Barrena E., deOteyza D.G., Sellner S.. In situ study of the growth of nanodots in organic heteroepitaxy[J]. Phys. Rev. Lett., 2006,97076102. doi: 10.1103/PhysRevLett.97.076102

    32. [32]

      Huang Y.L., Chen W., Li H.. Tunable two-dimensional binary molecular networks[J]. Small, 2010,6:70-75. doi: 10.1002/smll.v6:1

    33. [33]

      Shen Y.T., Deng K., Li M.. Self-assembling in fabrication of ordered porphyrins and phthalocyanines hybrid nano-arrays on HOPG[J]. CrystEngComm, 2013,15:5526-5531. doi: 10.1039/c3ce40340h

    34. [34]

      Krauss T.N., Barrena E., Dosch H., Wakayama Y.. Supramolecular assembly of a 2D binary network of pentacene and phthalocyanine on Cu (100)[J]. ChemPhysChem, 2009,10:2445-2448. doi: 10.1002/cphc.v10:14

    35. [35]

      Huang Y.L., Chen W., Wee A.T.S.. Molecular trapping on two-dimensional binary supramolecular networks[J]. J. Am. Chem. Soc., 2011,133:820-825. doi: 10.1021/ja106350d

    36. [36]

      Rohde D., Yan C.J., Wan L.J.. C-H…F hydrogen bonding:the origin of the selfassemblies of bis (2, 2'-difluoro-1, 3, 2-dioxaborine)[J]. Langmuir, 2006,22:4750-4757. doi: 10.1021/la053138+

    37. [37]

      Mu Z.C., Shu L.J., Fuchs H., Mayor M., Chi L.F.. Two dimensional chiral networks emerging from the aryl-F…H hydrogen-bond-driven self-assembly of partially fluorinated rigid molecular structures[J]. J. Am. Chem. Soc., 2008,130:10840-10841. doi: 10.1021/ja801925q

    38. [38]

      Marele A.C., Corral I., Sanz P.. Some pictures of alcoholic dancing:from simple to complex hydrogen-bonded networks based on polyalcohols[J]. J. Phys. Chem. C, 2013,117:4680-4690.

    39. [39]

      Sheng K., Sun Q., Zhang C., Tan Q.G.. Steering on-surface supramolecular nanostructures by tert-butyl group[J]. J. Phys. Chem. C, 2014,118:3088-3092. doi: 10.1021/jp411222m

    40. [40]

      Reichert J., Marschall M., Seufert K.. Competing interactions in surface reticulation with a prochiraldicarbonitrile linker[J]. J. Phys. Chem. C, 2013,117:12858-12863.

    41. [41]

      Eremtchenko M., Schaefer J.A., Tautz F.S.. Understanding and tuning the epitaxy of large aromatic adsorbates by molecular design[J]. Nature, 2003,425:602-605. doi: 10.1038/nature01901

    42. [42]

      Knudsen M.M., Kalashnyk N., Masini F.. Controlling chiral organization of molecular rods on Au (111) by molecular design[J]. J. Am. Chem. Soc., 2011,133:4896-4905. doi: 10.1021/ja110052n

    43. [43]

      Yokoyama T., Yokoyama S., Kamikado T., Okuno Y., Mashiko S.. Selective assembly on a surface of supramolecular aggregates with controlled size and shape[J]. Nature, 2001,413:619-621. doi: 10.1038/35098059

    44. [44]

      Yokoyama T., Kamikado T., Yokoyama S., Mashiko S.. Conformation selective assembly of carboxyphenyl substituted porphyrins on Au (111)[J]. J. Chem. Phys., 2004,121:11993-11997. doi: 10.1063/1.1819877

    45. [45]

      Wang Y.L., Lingenfelder M., Fabris S.. Programming hierarchical supramolecular nanostructures by molecular design[J]. J. Phys. Chem. C, 2013,117:3440-3445. doi: 10.1021/jp309566s

    46. [46]

      Grill L., Dyer M., Lafferentz L.. Nano-architectures bycovalent assemblyof molecular building blocks[J]. Nat. Nanotechnol., 2007,2:687-691. doi: 10.1038/nnano.2007.346

  • 加载中
    1. [1]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    2. [2]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    3. [3]

      Lei WangJun-Jie WuChang-Cun YanWan-Ying YangZong-Lu CheXin-Yu XiaXue-Dong WangLiang-Sheng Liao . Near-infrared organic lasers with ultra-broad emission bands by simultaneously harnessing four-level and six-level systems. Chinese Chemical Letters, 2024, 35(8): 109365-. doi: 10.1016/j.cclet.2023.109365

    4. [4]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    5. [5]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    6. [6]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    7. [7]

      Qinghong PanHuafang ZhangQiaoling LiuDonghong HuangDa-Peng YangTianjia JiangShuyang SunXiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169

    8. [8]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    9. [9]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    10. [10]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    11. [11]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    12. [12]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    13. [13]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    14. [14]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    15. [15]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    16. [16]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    17. [17]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    18. [18]

      Yuchen Wang Zhenhao Xu Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418

    19. [19]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    20. [20]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

Metrics
  • PDF Downloads(0)
  • Abstract views(634)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return