Citation: Li Xin-Le, Lang Xiao-Mei, Yang Lian-Ming, Zhou Sheng-Yuan, Hu Hong-Fan, Xue Shan, Sun Xin, Xin Shi-Xuan. Nickel-catalyzed C-N crossing coupling reaction: The synthetic method for N-aryl substituted indenoindole[J]. Chinese Chemical Letters, ;2017, 28(3): 569-574. doi: 10.1016/j.cclet.2016.11.002 shu

Nickel-catalyzed C-N crossing coupling reaction: The synthetic method for N-aryl substituted indenoindole

Figures(2)

  • A nickel-based catalyst was employed for the first time in the crossing-coupling of indenoindoles with bromo-/iodoarenes. A simple and practical method was provided for the synthesis of N-aryl substituted indenoindole and the mechanism of this reaction was discussed.
  • 加载中
    1. [1]

      Grandini C., Camurati I., Guidotti S., Mascellani N., Resconi L.. Heterocyclefused indenyl silyl amido dimethyl titanium complexes as catalysts for high molecular weight syndiotactic amorphous polypropylene[J]. Organometallics, 2004,23:344-360.

    2. [2]

      Nifant'ev I.E., Kashulin I.A., Bagrov V.V., Abilev S.K.. Synthesis and study of the mutagenic activity of di (indeno[2, 1-b]indolyl)-and di (indeno[2, 1-b] pyrrolyl) methanes and -dimethylsilanes[J]. Russ. Chem. Bull. Int. Ed., 2001,50:1439-1445.

    3. [3]

      Kissin Y.V., Rishina L.A., Lalavan S.S., Krasheninnkikov V.G.. A new route to atactic polypropylene:the second life of premetallocene homogeneous polymerization catalyst[J]. Polym. Chem., 2015,53:2124-2131.

    4. [4]

      Brintzinger H.H., Fischer D., Mulhaupt R., Rieger B., Waymouth R.. Selfassembly of a ferromagnetically coupled manganese (Ⅱ) tetramer[J]. Angew. Chem. Int. Ed., 1995,34:1143-1146.

    5. [5]

      Ewen J.A., Jones R.L., Razavi A., Ferrara J.D.. Syndiospecific propylene polymerizations with group IVB metallocenes[J]. J. Am. Chem. Soc., 1988,110:6255-6256.

    6. [6]

      Razavi A., Peters L., Nafpliotis L.V., Den Dauw D.K., Atwood J.L.. The geometry of the site and its relevance for chain migration and stereospecificity[J]. Macromol. Symp., 1995,89:345-367.

    7. [7]

      Longo P., Maricoda A., D'Urso L., Napoli M.. Syndiotactic-atactic stereoblock polystyrene obtained with ahapto-flexible catalyst[J]. Macromolecules, 2014,47:2214-2218.

    8. [8]

      Rosebrugh L.E., Marx V.M., Keitz B.K., Grubbs R.H.. Highly active ruthenium metathesis catalysts exhibiting unprecedented activity and Z-selectivity[J]. J. Am. Chem. Soc., 2013,135:10032-10035.

    9. [9]

      (a) E. Brenner, Y. Fort, New efficient nickel (0) catalysed amination of aryl chlorides, Tetrahedron Lett. (391998) 5359-5362;
      (b) E. Brenner, R. Schneider, Y. Fort, Nickel-catalysed couplings of aryl chlorides with secondary amines and piperazines, Tetrahedron 55(1999) 12829-12842;
      (c) C. Desmarets, R. Schneider, Y. Fort, Nickel (0)/dihydroimidazol-2-ylidene complex catalyzed coupling of aryl chlorides and amines, J. Org. Chem. 67(2002) 3029-3036.

    10. [10]

      Matsubara K., Ueno K., Koga Y., Hara K.. Nickel-NHC-catalyzed a-arylation of acyclic ketones and amination of haloarenes and unexpected preferential Narylation of 4-aminopropiophenone[J]. J. Org. Chem., 2007,72:5069-5076.

    11. [11]

      (a) B.H. Lipshutz, H. Ueada, Aromatic aminations by heterogeneous Ni0/C catalysis, Angew. Chem. Int. Ed. 39(2000) 4492-4494;
      (b) S. Tasler, B.H. Lipshutz, Nickel-on-charcoal-catalyzed aromatic aminations and kumada couplings:mechanistic and synthetic aspects, J. Org. Chem. 68(2003) 1190-1199.

    12. [12]

      Manolikakes G., Gavryushin A., Knochel P.. An efficient silane-promoted nickel-catalyzed amination of aryl and heteroaryl chlorides[J]. J. Org. Chem., 2008,73:1429-1434.

    13. [13]

      Iglesias M.J., Prieto A., Nicasio M.C.. Well-defined allylnickel chloride/Nheterocyclic carbene[(NHC) Ni (allyl) Cl]complexes as highlyactive precatalysts for C-N and C-S cross-coupling reactions[J]. Adv. Synth. Catal., 2010,352:1949-1954.

    14. [14]

      Ackermann L., Sandmann R., Song W.F.. Palladium-and nickel-catalyzed aminations of aryl imidazolylsulfonates and sulfamates[J]. Org. Lett., 2011,13:1784-1786.

    15. [15]

      Tobisu M., Yasutome A., Yamakawa K., Shimasaki T., Chatani N.. Ni (0)/NHCcatalyzed amination of N-heteroaryl methyl ethers through the cleavage of carbon-oxygen bonds[J]. Tetrahedron, 2012,68:5157-5161.

    16. [16]

      (a) F. Ullmannhem, Ueber eine neue bildungsweise von diphenylaminderivaten, Eur. J. Inorg. Chem. 36(1903) 2382-2384;
      (b) J.Lindley, Copperassistednucleophilicsubstitutionofarylhalogen, Tetrahedron 40(1984) 1433-1456.

    17. [17]

      Tlili A., Monnier F., Taillefer M.. Selective one-pot synthesis of symmetrical and unsymmetrical di-and triarylamines with a ligandless copper catalytic system[J]. Chem. Commun., 2012,48:6408-6410.

    18. [18]

      Nandurkar N.S., Bhanushali M.J., Bhor M.D., Bhanage B.M.. N-arylation of aliphatic, aromatic and heteroaromatic amines catalyzed by copper bis (2, 2, 6, 6-tetramethyl-3, 5-heptanedionate)[J]. Tetrahedron Lett., 2007,48:6573-6576.

    19. [19]

      Ley S.V., Thomas A.W.. Modern synthetic methods for copper-mediated C (aryl)=O, C (aryl)=N, and C (aryl)=S bond formation[J]. Angew. Chem. Int. Ed., 2003,42:5400-5449.

    20. [20]

      Antilla J.C., Klapars A.S., Buchwald S.L.. The copper-catalyzed N-arylation of indoles[J]. J. Am. Chem. Soc., 2002,124:11684-11688.

    21. [21]

      (a) C. Chen, L.M. Yang, Arylation of diarylamines catalyzed by Ni (Ⅱ)-PPh3 system, Org. Lett. 7(2005) 2209-2211;
      (b) C.Y. Gao, X. Cao, L.M. Yang, Nickel-catalyzed cross-coupling of diarylamines with haloarenes, Org. Biomol. Chem. 7(2009) 3922-3925.

    22. [22]

      Chen C., Yang L.M.. Ni (Ⅱ)-(s-aryl) complex:a facile, efficient catalyst for nickel-catalyzed carbon-nitrogen coupling reactions[J]. J. Org. Chem., 2007,72:6324-6327.

    23. [23]

      Fan X.H., Li G., Yang L.M.. Room-temperature nickel-catalyzed amination of heteroaryl/aryl chlorides with Ni (Ⅱ)-(s-aryl) complex as precatalyst[J]. J. Organomet. Chem., 2011,696:2482-2484.

    24. [24]

      Gao C.Y., Yang L.M.. Nickel-catalyzed amination of aryl tosylates[J]. J. Org. Chem., 2008,39:1624-1627.

    25. [25]

      Huang J.H., Yang L.M.. Nickel-catalyzed amination of aryl phosphates through cleaving aryl C-O bonds[J]. Org. Lett., 2011,13:375-3750.

    26. [26]

      (a) L. Cassar, S. Ferrara, M. Foá, Nickel-catalyzed cyanation of aromatic halides, Adv. Chem. Ser. 17(1974) 252-273;
      (b) J. van Soolingen, H.D. Verkruijsse, M.A. Keegstra, L. Brandsma, Nickelcatalyzed cyanation of 2-and 3-bromothiophene, Synth. Commun. 20(1990) 3153-3156;
      (c) L. Brandsma, S.F. Vasilevsky, H.D. Verkruijsse, Application of Transition Metal Catalysts in Organic Synthesis, Springer, New York, 1998, pp. 3-4.

    27. [27]

      (a) T.T. Tsou, J.K. Kochi, Mechanism of oxidative addition reaction of nickel (0) complexes with aromatic halides, J. Am. Chem. Soc. 101(1979) 6319-6332;
      (b) J.K. Kochi, The role of electron transfer in organometallic chemistry, Pure Appl. Chem. 52(1980) 60-571.

    28. [28]

      Tobisu M., Shimasaki T., Chatani N.. Ni0-catalyzed direct amination of anisoles involving the cleavage of carbon-oxygen bonds[J]. Chem. Lett., 2009,38:710-711.

  • 加载中
    1. [1]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    2. [2]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    3. [3]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    4. [4]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    5. [5]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    6. [6]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    7. [7]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    8. [8]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    9. [9]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    10. [10]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    11. [11]

      Xin Huang Yi Zhao Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278

    12. [12]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    13. [13]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    14. [14]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    15. [15]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    16. [16]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    17. [17]

      Bowen WangLongwu SunQianqian CaoXinzhi LiJianai ChenShizhao WangMiaolin KeFener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617

    18. [18]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    19. [19]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    20. [20]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

Metrics
  • PDF Downloads(1)
  • Abstract views(632)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return