Citation: Yin Dong-Hang, Liu Wei, Wang Zhi-Xiang, Huang Xin, Zhang Jing, Huang De-Chun. Enzyme-catalyzed direct three-component aza-Diels-Alder reaction using lipase from Candida sp. 99-125[J]. Chinese Chemical Letters, ;2017, 28(1): 153-158. doi: 10.1016/j.cclet.2016.10.015 shu

Enzyme-catalyzed direct three-component aza-Diels-Alder reaction using lipase from Candida sp. 99-125

  • Corresponding author: Huang De-Chun, cpuhdc@cpu.edu.cn
  • Received Date: 28 June 2016
    Revised Date: 11 July 2016
    Accepted Date: 25 July 2016
    Available Online: 20 January 2016

Figures(2)

  • The direct three-component aza-Diels-Alder reaction was conducted with lipase as a catalyst for the first time. Under the optimized conditions, the aza-Diels-Alder reaction catalyzed by lipase from Candida sp. 99-125 provided the products in moderate to excellent yields. Meanwhile, the endo/exo ratio reached up to 88:12.
  • 加载中
    1. [1]

      Katritzky A.R., Pozharskii A.F.. Handbook of Heterocyclic Chemistry, Pergamon Press[J]. Oxford, 2000.

    2. [2]

      Bodnar A.L., Cortes L.A., Burgos -, Cook K.K.. Discovery and structureactivity relationship of quinuclidine benzamides as agonists of a7 nicotinic acetylcholine receptors[J]. J. Med. Chem., 2005,48:905-908. doi: 10.1021/jm049363q

    3. [3]

      Gong L., Hogg J.H., Collier J., Wilhelmb R.S., Soderberg C.. Design and synthesis of novel CCR3 antagonists[J]. Bioorg. Med. Chem. Lett., 2003,13:3597-3600. doi: 10.1016/S0960-894X(03)00748-0

    4. [4]

      H. Aissaoui, C. Boss, M. Gude, et al., 2-Aza-bicyclo[3.3.0] octane derivatives, WO2009016564, A2

    5. [5]

      L. Huang, J.P. Chen, C. Jin, W.K. Su, An efficient synthesis of 2, 3-diaryl-2-azabicyclo[2.2.2] octan-5-ones and their acetylcholinesterase inhibitory activity, Chin. Chem. Lett. 24(2013) 347-350.

    6. [6]

      Mannino C., Nievo M., Machetti F.. Synthesis of bicyclic molecular scaffolds (BTAa):an investigation towards new selective MMP-12 inhibitors[J]. Bioorg. Med. Chem., 2006,14:7392-7403. doi: 10.1016/j.bmc.2006.07.028

    7. [7]

      L. Kurti, B. Czako, Strategic Applications of Named Reactions in Organic Synthesis, Elsevier Academic Press, New York, 2005, pp. 204.

    8. [8]

      Borkin D., Morzhina E., Datta S.. Heteropoly acid-catalyzed microwave assisted three-component aza-Diels-Alder cyclizations:Diastereoselective synthesis of potential drug candidates for Alzheimer's disease[J]. Org. Biomol. Chem., 2011,9:1394-1401. doi: 10.1039/c0ob00638f

    9. [9]

      D. Borkin, E. Morzhina, S. Datta, et al., Heteropoly acid-catalyzed microwave assisted three-component aza-Diels-Alder cyclizations:Diastereoselective synthesis of potential drug candidates for Alzheimer's disease, Org. Biomol. Chem. 9(2011) 1394-1401.

    10. [10]

      (a) M. Rueping, C. Azap, Cooperative coexistence:effective interplay of two Brøensted acids in the asymmetric synthesis of isoquinuclidines, Angew. Chem. Int. Ed. 45(2006) 7832-7835;
      (b) U. Costantino, F. Fringuelli, M. Orrù, et al., Direct aza-Diels-Alder reaction in water catalyzed by layered a-zirconium hydrogen phosphate and sodium dodecyl sulfate, Eur. J. Org. Chem. 2009(2009) 1214-1220.

    11. [11]

      (a) H. Sundén, I. Ibrahem, L. Eriksson, A. Córdova, Direct catalytic enantioselective aza-Diels-Alder reactions, Angew. Chem. Int. Ed. 44(2005) 4877-4880;
      (b) H. Yang, R.G. Carter, Asymmetric construction of nitrogen-containing[2.2.2] bicyclic scaffolds using N-(p-dodecylphenylsulfonyl)-2-pyrrolidinecarboxamide, J. Org. Chem. 74(2009) 5151-5156.

    12. [12]

      X. Zheng, Y.B. Qian, Y.M. Wang, Direct asymmetric aza Diels-Alder reaction catalyzed by chiral 2-pyrrolidinecarboxylic acid ionic liquid, Catal. Commun. 11(2010) 567-570.

    13. [13]

      H. Liu, L.F. Cun, A.Q. Mi, Y.Z. Jiang, L.Z. Gong, Enantioselective direct aza heteroDiels-Alder reaction catalyzed by chiral Brønsted acids, Org. Lett. 8(2006) 6023-6026.

    14. [14]

      (a) A. Babtie, N. Tokuriki, F. Hollfelder, What makes an enzyme promiscuous? Curr. Opin. Chem. Biol. 14(2010) 200-207;
      (b) M.S. Humble, P. Berglund, Biocatalytic promiscuity, Eur. J. Org. Chem. 2011(2011) 3391-3401.

    15. [15]

      (a) J.M. Woodley, New opportunities for biocatalysis:making pharmaceutical processes greener, Trends Biotechnol. 26(2008) 321-327;
      (b) F. Kopp, M.A. Marahiel, Where chemistry meets biology:the chemoenzymatic synthesis of nonribosomal peptides and polyketides, Curr. Opin. Biotechnol. 18(2007) 513-520;
      (c) K. Hult, P. Berglund, Engineered enzymes for improved organic synthesis, Curr. Opin. Biotechnol. 14(2003) 395-400.

    16. [16]

      Ward O.P., Singh A.. Enzymatic asymmetric synthesis by decarboxylases[J]. Curr. Opin. Biotechnol., 2000,11:520-526. doi: 10.1016/S0958-1669(00)00139-7

    17. [17]

      Hult K., Berglund P.. Enzyme promiscuity:mechanism and applications[J]. Trends Biotechnol., 2007,25:231-238. doi: 10.1016/j.tibtech.2007.03.002

    18. [18]

      (a) W.B. Wu, J.M. Xu, Q. Wu, D.S. Lv, X.F. Lin, Promiscuous acylases-catalyzed Markovnikov addition of N-heterocycles to vinyl esters in organic media, Adv. Synth. Catal. 348(2006) 487-492;
      (b) J.M. Xu, F. Zhang, B.K. Liu, Q. Wu, X.F. Lin, Promiscuous zinc-dependent acylase-mediated carbon-carbon bond formation in organic media, Chem. Commun. (2007) 2078-2080;
      (c) T. Purkarthofer, K. Gruber, M. Gruber-Khadjawi, et al., A biocatalytic Henry reaction-the hydroxynitrile lyase from Hevea brasiliensis also catalyzes nitroaldol reactions, Angew. Chem. Int. Ed. 45(2006) 3454-3456;
      (d) C. Li, X.W. Feng, N. Wang, Y.J. Zhou, X.Q. Yu, Biocatalytic promiscuity:the first lipase-catalysed asymmetric aldol reaction, Green Chem. 10(2008) 616-618.

    19. [19]

      (a) M. Svedendahl, K. Hult, P. Berglund, Fast carbon-carbon bond formation by a promiscuous lipase, J. Am. Chem. Soc. 127(2005) 17988-17989;
      (b) O. Torre, I. Alfonso, V. Gotor, Lipase catalysed Michael addition of secondary amines to acrylonitrile, Chem. Commun. (2004) 1724-1725;
      (c) C. Branneby, P. Carlqvist, A. Magnusson, et al., Carbon-carbon bonds by hydrolytic enzymes, J. Am. Chem. Soc. 125(2003) 874-875.

    20. [20]

      W.B. Wu, N. Wang, J.M. Xu, Q. Wu, X.F. Lin, Penicillin G acylase catalyzed Markovnikov addition of allopurinol to vinyl ester, Chem. Commun. (2005) 2348-2350.

    21. [21]

      He Y.H., Hu W., Guan Z.. Enzyme-catalyzed direct three-component aza-Diels-Alder reaction using hen egg white lysozyme[J]. J. Org. Chem., 2012,77:200-207. doi: 10.1021/jo2016696

    22. [22]

      Bourg S., Garros -, Razafindramboa N., Pavia A.A.. Large-scale preparation of (Z)-3-hexen-1-yl acetate using Candida antarctica-immobilized lipase in hexane[J]. Biotechnol. Bioeng., 1998,59:495-500. doi: 10.1002/(ISSN)1097-0290

    23. [23]

      M.S. de Castro, J.S. Gago, Lipase-catalyzed synthesis of chiral amides. A systematic study of the variables that control the synthesis, Tetrahedron 54(1998) 2877-2892.

    24. [24]

      D.Y. Fu, M.R. Yu, T.W. Tan, X. Zhou, Separation, characterization and catalytic properties of Lip2 isoforms from Candida sp. 99-125, J. Mol. Catal. B Enzym. 56(2009) 115-121.

    25. [25]

      Tan T.W., Chen B.Q., Ye H.. Enzymatic synthesis of 2-ethylhexyl palmitate by lipase immobilized on fabric membranes in the batch reactor[J]. Biochem. Eng. J., 2006,29:41-45. doi: 10.1016/j.bej.2005.02.033

    26. [26]

      L. Deng, T.W. Tan, F. Wang, X.B. Xu, Enzymatic production of fatty acid alkyl esters with a lipase preparation from Candida sp. 99-125, Eur. J. Lipid Sci. Technol. 105(2003) 727-734.

    27. [27]

      Jiang L.Y., Xie X.N., Yue H.. Highlyefficient and regioselective acylation of arbutin catalyzed by lipase from Candida sp[J]. Process Biochem., 2015,50:789-792. doi: 10.1016/j.procbio.2015.02.014

    28. [28]

      He W., Fang Z., Yang Z., Ji D., Guo K.. Heteropoly acid-catalyzed threecomponent aza-Diels-Alder reaction in a continuous micro-flow system[J]. RSC Adv., 2015,5:58798-58803. doi: 10.1039/C5RA08264A

    29. [29]

      Griebenow K., Klibanov A.M.. On protein denaturation in aqueous-organic mixtures but not in pure organic solvents[J]. J. Am. Chem. Soc., 1996,118:11695-11700.  

    30. [30]

      Yadav G.D., Lathi P.S.. Synthesis of citronellol laurate in organic media catalyzed by immobilized lipases:kinetic studies[J]. J. Mol. Catal. B Enzym., 2004,27:113-119. doi: 10.1016/j.molcatb.2003.10.004

    31. [31]

      L. Casas-Godoy, S. Duquesne, F. Bordes, G. Sandoval, A. Marty, Lipases:an overview, in:G. Sandoval (Ed.), Lipases and Phospholipases, Humana Press, New York, 2012, pp. 3-30.

  • 加载中
    1. [1]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    2. [2]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    3. [3]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    4. [4]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    5. [5]

      Chuan LiYangyang HanYanan ZhaiKe LiXingzhong LiuZhuan ZhangCai JiaYongsheng Che . Phomaketals A and B, pentacyclic meroterpenoids from a eupC overexpressed mutant strain of Phoma sp.. Chinese Chemical Letters, 2024, 35(7): 109019-. doi: 10.1016/j.cclet.2023.109019

    6. [6]

      Shuige ZhaoPengcheng YanPeipei LiuHaishan LiuNing LiPeng FuWeiming Zhu . Pyridapeptides F‒I, cyclohexapeptides from marine sponge-derived Streptomyces sp. OUCMDZ-4539. Chinese Chemical Letters, 2024, 35(7): 108950-. doi: 10.1016/j.cclet.2023.108950

    7. [7]

      Hong ZhangCui-Ping LiLi-Li WangZhuo-Da ZhouWen-Sen LiLing-Yi KongMing-Hua Yang . Asperochones A and B, two antimicrobial aromatic polyketides from the endophytic fungus Aspergillus sp. MMC-2. Chinese Chemical Letters, 2024, 35(9): 109351-. doi: 10.1016/j.cclet.2023.109351

    8. [8]

      Qi TanRun-Zhu FanWencong YangGe ZouTao ChenJianying WuBo WangSheng YinZhigang She . (+)/(−)-Mycosphatide A, a pair of highly oxidized polyketides with lipid-lowering activity from the mangrove endophytic fungus Mycosphaerella sp. SYSU-DZG01. Chinese Chemical Letters, 2024, 35(9): 109390-. doi: 10.1016/j.cclet.2023.109390

    9. [9]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    10. [10]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    11. [11]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    12. [12]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    13. [13]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    14. [14]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    15. [15]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    16. [16]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    17. [17]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    18. [18]

      Wenjuan JinZelong ChenYi WangJiaxuan LiJiahui LiYuxin PeiZhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328

    19. [19]

      Lulu CaoYikun LiDongxiang ZhangShuai YueRong ShangXin-Dong JiangJianjun Du . Engineering aggregates of julolidine-substituted aza-BODIPY nanoparticles for NIR-II photothermal therapy. Chinese Chemical Letters, 2024, 35(12): 109735-. doi: 10.1016/j.cclet.2024.109735

    20. [20]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

Metrics
  • PDF Downloads(1)
  • Abstract views(648)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return