Citation: Wang Chen-Guang, Cheng Zhi-Hai, Qiu Xiao-Hui, Ji Wei. Unusually high electron density in an intermolecular non-bonding region: Role of metal substrate[J]. Chinese Chemical Letters, ;2017, 28(4): 759-764. doi: 10.1016/j.cclet.2016.08.004 shu

Unusually high electron density in an intermolecular non-bonding region: Role of metal substrate

Figures(5)

  • It has been demonstrated that intermolecular interaction, crucial in a plenty of chemical and physical processes, may vary in the presence of metal surface.However, such modification is yet to be quantitatively revealed.Here, we present a systematical density functional theory study on adsorbed bis(para-pyridyl)acetylene(BPPA)tetramer on Au(111) surface.We observed unusually high electron density between two head-to-head N atoms, an intermolecular "non-bonded" region, in adsorbed BPPA tetramer.This exceptional electron density originates from the wavefunction hybridization of the two compressed N lone-electron-pair states of two BPPA, as squeezed by a newly revealed N-Au-N three-center bonding.This bond, together with the minor contribution from N H-C intermolecular hydrogen bonding, shortens the N-N distance from over 4 Å to 3.30 Å and offers an attractive lateral interacting energy of 0.60 eV, effectively to a surface-confined in-plane pressure.The overlapped non-bonding wavefunction hybridization arising from the effective pressure induced by the N-Au-N three-center bonding, as not been fully recognized in earlier studies, was manifested in non-contact Atomic Force Microscopy.
  • 加载中
    1. [1]

      J. D. Lee, Concise Inorganic Chemistry, John Wiley & Sons, New York, 2008.

    2. [2]

      Grochala W., Hoffmann R., Feng J., Ashcroft N.W.. The chemical imagination at work in very tight places[J]. Angew.Chem.Int.Ed., 2007,46:3620-3642. doi: 10.1002/(ISSN)1521-3773

    3. [3]

      Gross L., Mohn F., Moll N., Liljeroth P., Meyer G.. The chemical structure of a molecule resolved by atomic force microscopy[J]. Science, 2009,325:1110-1114. doi: 10.1126/science.1176210

    4. [4]

      Gross L., Mohn F., Moll N.. Bond-order discrimination by atomic force microscopy[J]. Science, 2012,337:1326-1329. doi: 10.1126/science.1225621

    5. [5]

      Emmrich M., Huber F., Pielmeier F.. Subatomic resolution force microscopy reveals internal structure and adsorption sites of small iron clusters[J]. Science, 2015,348:308-311. doi: 10.1126/science.aaa5329

    6. [6]

      Gross L., Mohn F., Moll N.. Organic structure determination using atomic-resolution scanning probe microscopy[J]. Nat.Chem., 2010,2:821-825. doi: 10.1038/nchem.765

    7. [7]

      de Oteyza D.G., Gorman P., Chen Y.C.. Direct imaging of covalent bond structure in single-molecule chemical reactions[J]. Science, 2013,340:1434-1437. doi: 10.1126/science.1238187

    8. [8]

      Welker J., Giessibl F.J.. Revealing the angular symmetry of chemical bonds by atomic force microscopy[J]. Science, 2012,336:444-449. doi: 10.1126/science.1219850

    9. [9]

      Zhang J., Chen P.C., Yuan B.K.. Real-space identification of intermolecular bonding with atomic force microscopy[J]. Science, 2013,342:611-614. doi: 10.1126/science.1242603

    10. [10]

      Hämäläinen S.K., van der Heijden N., van der Lit J.. Intermolecular contrast in atomic force microscopy images without intermolecular bonds[J]. Phys.Rev.Lett., 2014,113186102. doi: 10.1103/PhysRevLett.113.186102

    11. [11]

      Hapala P., Kichin G., Wagner C.. Mechanism of high-resolution stm/afm imaging with functionalized tips[J]. Phys.Rev.B, 2014,90085421. doi: 10.1103/PhysRevB.90.085421

    12. [12]

      Blöchl P.E.. Projector augmented-wave method[J]. Phys.Rev.B, 1994,50:17953-17979. doi: 10.1103/PhysRevB.50.17953

    13. [13]

      Kresse G., Joubert D.. From ultrasoft pseudopotentials to the projector augment-ed-wave method[J]. Phys.Rev.B, 1999,59:1758-1775.

    14. [14]

      Kresse G., Furthmüller J.. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput.Mater.Sci., 1996,6:15-50. doi: 10.1016/0927-0256(96)00008-0

    15. [15]

      Kresse G., Furthmüller J.. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys.Rev.B, 1996,54:11169-11186. doi: 10.1103/PhysRevB.54.11169

    16. [16]

      J. Klimeš, D. R. Bowler, A. Michaelides, Chemical accuracy for the van der Waals density functional, J. Phys. : Condens. Matter 22(2010)022201.

    17. [17]

      Hu Z.X., Lan H.P., Ji W.. Role of the dispersion force in modeling the interfacial properties of molecule-metal interfaces:adsorption of thiophene on copper surfaces[J]. Sci.Rep., 2014,45036.  

    18. [18]

      Moll N., Gross L., Mohn F., Curioni A., Meyer G.. A simple model of molecular imaging with noncontact atomic force microscopy[J]. New J.Phys., 2012,14083023. doi: 10.1088/1367-2630/14/8/083023

    19. [19]

      G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, New York, 1997.

    20. [20]

      Zhang J., Yuan B.K., Chen P.C.. Exceptionally stiff two-dimensional molecular crystal by substrate-confinement[J]. ACS Nano, 2014,8:11425-11431. doi: 10.1021/nn505969v

    21. [21]

      Pavliček N., Schuler B., Collazos S.. On-surface generation and imaging of arynes by atomic force microscopy[J]. Nat.Chem., 2015,7:623-628. doi: 10.1038/nchem.2300

    22. [22]

      Guo C.S., Van Hove M.A., Ren X.G., Zhao Y.. High-resolution model for noncontact atomic force microscopy with a flexible molecule on the tip apex[J]. J.Phys.Chem.C, 2015,119:1483-1488.  

    23. [23]

      Gross L.. Recent advances in submolecular resolution with scanning probe microscopy[J]. Nat.Chem., 2011,3:273-278. doi: 10.1038/nchem.1008

    24. [24]

      W. D. Callister Jr. , D. G. Rethwisch, Materials Science and Engineering: An Introduction, Wiley, New York, 2007.

    25. [25]

      Gibbs G.V., Hill F.C., Boisen M.B., Downs R.T.. Power law relationships between bond length, bond strength and electron density distributions[J]. Phys.Chem.Miner., 1998,25:585-590. doi: 10.1007/s002690050151

    26. [26]

      Qiao J.S., Kong X.H., Hu Z.X., Yang F., Ji W.. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nat.Commun., 2014,54475.  

    27. [27]

      Zhao Y.D., Qiao J.S., Yu P.. Extraordinarily strong interlayer interaction in 2D layered Pts2[J]. Adv.Mater., 2016,28:2399-2407. doi: 10.1002/adma.v28.12

  • 加载中
    1. [1]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    2. [2]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    3. [3]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    4. [4]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    5. [5]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    6. [6]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    7. [7]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    8. [8]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    9. [9]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    10. [10]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    11. [11]

      Yun-Xin HuangLin-Qian YuKe-Yu ChenHao WangShou-Yan ZhaoBao-Cheng HuangRen-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437

    12. [12]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    13. [13]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    14. [14]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    15. [15]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    16. [16]

      Chao Ma Peng Guo Zhongmin Liu . DNL-16: A new zeolitic layered silicate unraveled by three-dimensional electron diffraction. Chinese Journal of Structural Chemistry, 2024, 43(4): 100235-100235. doi: 10.1016/j.cjsc.2024.100235

    17. [17]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    18. [18]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    19. [19]

      Jiayuan Liang Xin Mi Songhao Guo Hui Luo Kejun Bu Tonghuan Fu Menglin Duan Yang Wang Qingyang Hu Rengen Xiong Peng Qin Fuqiang Huang Xujie Lü . Pressure-induced emission in 0D metal halide (EATMP)SbBr5 by regulating exciton-phonon coupling. Chinese Journal of Structural Chemistry, 2024, 43(7): 100333-100333. doi: 10.1016/j.cjsc.2024.100333

    20. [20]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

Metrics
  • PDF Downloads(0)
  • Abstract views(574)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return