Citation: Ya-Nan Liu, Shi-Fan Wang, You-Tian Tao, Wei Huang. Heavy metal complex containing organic/polymer materials for bulk-heterojunction photovoltaic devices[J]. Chinese Chemical Letters, ;2016, 27(8): 1250-1258. doi: 10.1016/j.cclet.2016.07.018 shu

Heavy metal complex containing organic/polymer materials for bulk-heterojunction photovoltaic devices


  • Author Bio:

    Prof. You-Tian Tao received her BSc and PhD degree at Department of Chemistry, Wuhan University, China in 2006 and 2011, respectively, under the supervision of Prof. Chu-Luo Yang & Prof. Jin-Gui Qin. During 2005 to 2006, she was a visiting student working on organic/polymeric light-emitting devices in Prof. Dong-Ge Ma's group at Changchun Institute of Applied Chemistry, CAS. After three years of visiting study and PDRA in Melville Laboratory for Polymer Synthesis at the Department of Chemistry, University of Cambridge in Prof. Wilhelm Huck's group (2009-2012), she joined the Institute of Advanced Materials (IAM), Nanjing Tech University in the early of 2013. Her research interest focused on organic optoelectronic materials, such as OLED, OFET and OPV;Professor Wei Huang received his BSc in Chemistry from Peking University in 1983, then followed by receiving his MSc and PhD in Physical Chemistry from the same university. Then he did his postdoctoral research in the Department of Chemistry with the National University of Singapore (NUS) where he participated in the foundation of the Institute of Materials Research and Engineering (IMRE) since 1995. In 2001, he joined NUS again as a professor with the Faculty of Engineering, teaching polymer science. In 2001, he became Chair Professor at Fudan University, where he founded and chaired the Institute of Advanced Materials (IAM). In June 2006, he was appointed as the Deputy President of the Nanjing University of Posts and Telecommunications, where he initiated the Institute of Advanced Materials (IAM) and the Key Laboratory for Organic Electronics and Information Displays (KLOEID). In November 2011, he was elected as Academician of the Chinese Academy of Sciences (CAS). In July 2012, he was appointed as the President of the Nanjing Tech University (Nanjing Tech, 2011 University) and founded the Institute of Advanced Materials (IAM) and the Key Laboratory of Flexible Electronics (KLOFE) with Nanjing Tech. His current research interests include organic/plastic/flexible/printable electronics, physical chemistry, bioelectronics, nanomaterials, nanoelectronics, and polymer

  • Corresponding author: You-Tian Tao, chemistry.iamyttao@njtech.edu.cn Wei Huang, iamwhuang@njtech.edu.cn
  • Received Date: 30 May 2016
    Revised Date: 18 July 2016
    Accepted Date: 1 July 2016
    Available Online: 27 August 2016

Figures(7)

  • The application of heavy-metal complexes in bulk-heterojunction (BHJ) solar cells is a promising new research field which has attracted increasing attention, due to their strong spin-orbit coupling for efficient singlet to triplet intersystem crossing. This review article focuses on recent advances of heavy metal complex containing organic and polymer materials as photovoltaic donors in BHJ solar cells. Platinum-acetylide containing oligomersor and polymers have been firstly illustrated due to the good solubility, square planar structure, as well as the fairly strong Pt-Pt interaction. Then the cyclometalated Pt or Ir complex containing conjugated oligomers and polymers are presented in which the triplet organometallic compounds are embedded into the organic/polymer backbone either through cyclometalated main ligand or the auxiliary ligand. Pure triplet small molecular cyclometalated Ir complex are also briefly introduced. Besides the chemical modification, physical doping of cyclometalated heavy metal complexes as additives into the photovoltaic active layers is finally demonstrated.
  • 加载中
    1. [1]

      C. Li, M. Liu, N.G Pschirer. Polyphenylene-based materials for organic photovoltaics[J]. Chem. Rev, 2010,110:6817-6855. doi: 10.1021/cr100052z

    2. [2]

      F.C. Krebs. Fabrication and processing of polymer solar cells: a review of printing and coating techniques[J]. Sol. Energy Mater. Sol. Cells, 2009,93:394-412. doi: 10.1016/j.solmat.2008.10.004

    3. [3]

      M. Helgesen, R. Søndergaard, F.C. Krebs. Advanced materials and processes for polymer solar cell devices[J]. J. Mater. Chem., 2010,20:36-60. doi: 10.1039/B913168J

    4. [4]

      R. Søndergaard, M. Hösel, D. Angmo. Roll-to-roll fabrication of polymer solar cells[J]. Mater. Today, 2012,15:36-49. doi: 10.1016/S1369-7021(12)70019-6

    5. [5]

      T.D. Nielsen, C. Cruickshank, S. Foged. Business, market and intellectual property analysis of polymer solar cells[J]. Sol Energy Mater. Sol. Cells, 2010,94:1553-1571. doi: 10.1016/j.solmat.2010.04.074

    6. [6]

      J. Chen, Y. Cao. Development of novel conjugated donor polymers for highefficiency bulk-heterojunction photovoltaic devices[J]. Acc. Chem. Res., 2009,42:1709-1718. doi: 10.1021/ar900061z

    7. [7]

      G. Dennler, M.C. Scharber, C.J. Brabec. Polymer-fullerene bulk-heterojunction solar cells[J]. Adv. Mater., 2009,21:1323-1338. doi: 10.1002/adma.v21:13

    8. [8]

      S.H. Chan, C.-S. Lai, H.L. Chen. Highly efficient P3HT: C60 solar cell free of annealing process[J]. Macromolecules, 2011,44:8886-8891. doi: 10.1021/ma201425d

    9. [9]

      E. Wang, L. Hou, Z. Wang. An easily synthesized blue polymer for highperformance polymer solar cells[J]. Adv. Mater., 2010,22:5240-5244. doi: 10.1002/adma.201002225

    10. [10]

      J. Peet, J.Y. Kim, N.E. Coates. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols[J]. Nat. Mater., 2007,6:497-500. doi: 10.1038/nmat1928

    11. [11]

      L. Lu, T. Zheng, Q. Wu. Recent advances in bulk heterojunction polymer solar cells[J]. Chem. Rev., 2015,115:12666-12731. doi: 10.1021/acs.chemrev.5b00098

    12. [12]

      Y. Zhang, X.-D. Dang, C. Kim. Effect of charge recombination on the fill factor of small molecule bulk heterojunction solar cells[J]. Adv. Energy Mater., 2011,1:610-617. doi: 10.1002/aenm.201100040

    13. [13]

      M.M. Wienk, J.M. Kroon, W.J.H. Verhees. Efficient methano[J]. Angew. Chem., 2003,115:3493-3497. doi: 10.1002/ange.200351647

    14. [14]

      W. Chen, T. Salim, H. Fan. Quinoxaline-functionalized C60 derivatives as electron acceptors in organic solar cells[J]. RSC Adv., 2014,4:25291-25301. doi: 10.1039/c4ra02911a

    15. [15]

      G. Zhao, Y. He, Y. Li. 6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and Indene-C60 bisadduct by device optimization[J]. Adv. Mater, 2010,22:4355-4358. doi: 10.1002/adma.v22:39

    16. [16]

      Q. Zhang, B. Kan, F. Liu. Small-molecule solar cells with efficiency over 9%[J]. Nat. Photon., 2015,9:35-41.  

    17. [17]

      B. Kan, Q. Zhang, M. Li. Solution-processed organic solar cells based on dialkylthiol-substituted benzodithiophene unit with efficiency near 10%[J]. J. Am. Chem. Soc., 2014,136:15529-15532. doi: 10.1021/ja509703k

    18. [18]

      Y. Liu, J. Zhao, Z. Li. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells[J]. Nat. Commun., 2014,5:1-8.  

    19. [19]

      L. Dou, C.C. Chen, K. Yoshimura. Synthesis of 5H-dithieno[J]. Macromolecules, 2013,46:3384-3390. doi: 10.1021/ma400452j

    20. [20]

      T.L. Nguyen, H. Choi, S.J. Ko. Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a 300 nm thick conventional single-cell device[J]. Energy Environ. Sci., 2014,7:3040-3051. doi: 10.1039/C4EE01529K

    21. [21]

      C.C. Chen, W.H. Chang, K. Yoshimura. An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%[J]. Adv. Mater., 2014,26:5670-5677. doi: 10.1002/adma.201402072

    22. [22]

      H. Zhou, Y. Zhang, C.K. Mai. Polymer Homo-Tandem Solar Cells with best efficiency of 11.3%[J]. Adv. Mater., 2015,27:1767-1773. doi: 10.1002/adma.201404220

    23. [23]

      W. Cai, X. Gong, Y. Cao. Polymer solar cells: recent development and possible routes for improvement in the performance[J]. Sol. Energy Mater. Sol. Cells, 2010,94:114-127. doi: 10.1016/j.solmat.2009.10.005

    24. [24]

      I. Etxebarria, J. Ajuria, R. Pacios. Polymer: fullerene solar cells: materials, processing issues, and cell layouts to reach power conversion efficiency over 10%, a review[J]. J. Photon. Energy, 2015,5057214. doi: 10.1117/1.JPE.5.057214

    25. [25]

      H. Benten, D. Mori, H. Ohkita. Recent research progress of polymer donor/polymer acceptor blend solar cells[J]. J. Mater. Chem. A, 2016,4:5340-5365. doi: 10.1039/C5TA10759H

    26. [26]

      T. Jiang, J. Yang, Y. Tao. Random terpolymer with a cost-effective monomer and comparable efficiency to PTB7-Th for bulk-heterojunction polymer solar cells[J]. Poly. Chem., 2016,7:926-932. doi: 10.1039/C5PY01771H

    27. [27]

      J. Lee, H. Ko, E. Song. Naphthodithiophene-based conjugated polymer with linear, planar backbone conformation and strong intermolecular packing for efficient organic solar cells[J]. ACS Appl Mater. Interfaces, 2015,7:21159-21169. doi: 10.1021/acsami.5b04884

    28. [28]

      L. Lu, L. Yu. Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it[J]. Adv. Mater., 2014,26:4413-4430. doi: 10.1002/adma.v26.26

    29. [29]

      J.J.M. Halls, K. Pichler, R.H. Friend. Exciton diffusion and dissociation in a poly (p-phenylenevinylene)/C60 heterojunction photovoltaic cell[J]. Appl. Phys. Lett., 1996,68:3120-3122. doi: 10.1063/1.115797

    30. [30]

      D.E. Markov, C. Tanase, P.W.M. Blom. Simultaneous enhancement of charge transport and exciton diffusion in poly(p-phenylenevinylene) derivatives[J]. Phys. Rev. B, 2005,72045217. doi: 10.1103/PhysRevB.72.045217

    31. [31]

      Y. Shao, Y. Yang. Efficient organic heterojunction photovoltaic cells based on triplet materials[J]. Adv. Mater., 2005,17:2841-2844. doi: 10.1002/(ISSN)1521-4095

    32. [32]

      J. Yu, J. Huang, H. Lin. Exciton diffusion length analysis of mixed donor materials in organic solar cells by doping with phosphorescent iridium complex[J]. J. Appl. Phys., 2010,108113111. doi: 10.1063/1.3514545

    33. [33]

      M.K. Etherington, J. Wang, P.C.Y. Chow. Recombination pathways in polymer fullerene photovoltaics observed through spin polarization measurements[J]. Appl. Phys. Lett., 2014,104063304. doi: 10.1063/1.4865203

    34. [34]

      V.D. Mihailetchi, L.J.A. Koster, J.C. Hummelen. Photocurrent generation in polymer-fullerene bulk heterojunctions[J]. Phys. Rev. Lett., 2004,9216601.  

    35. [35]

      T. Offermans, S.C.J. Meskers, R.A.J. Janssen. Charge recombination in a poly(-para-phenylenevinyl-ene)-fullerene derivative composite film studied by transient, nonresonant, hole-burning spectroscopy[J]. J. Chem. Phys., 2003,119:10924-10929. doi: 10.1063/1.1619946

    36. [36]

      S. Westenhoff, I.A. Howard, J.M. Hodgkiss. Charge recombination in organic photovoltaic devices with high open-circuit voltages[J]. J. Am. Chem. Soc., 2008,130:13653-13658. doi: 10.1021/ja803054g

    37. [37]

      T. Basel, U. Huynh, T. Zheng. Optical, electrical, and magnetic studies of organic solar cells based on low bandgap copolymer with spin 1/2 radical additives,[J]. Adv Funct. Mater., 2015,25:1895-1902. doi: 10.1002/adfm.201403191

    38. [38]

      J.P. Wang, A. Chepelianskii, F. Gao. Control of exciton spin statistics through spin polarization in organic optoelectronic devices[J]. Nat. Commun., 2012,3:1-6.  

    39. [39]

      J.G. Mei, K. Ogawa, Y.G. Kim. Low-band-gap platinum acetylide polymers as active materials for organic solar cells[J]. ACS Appl. Mater. Interfaces, 2009,1:150-161. doi: 10.1021/am800104k

    40. [40]

      T.A. Clem, D.F.J. Kavulak, E.J. Westling. Cyclometalated platinum polymers: synthesis, photophysical properties, and photovoltaic performance[J]. Chem. Mater., 2010,22:1977-1987. doi: 10.1021/cm9029038

    41. [41]

      M.A. Baldo, D.F. O'brien, Y. You. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 1998,395:151-154. doi: 10.1038/25954

    42. [42]

      R.D. Costa, E. Ortí, H.J. Bolink. Luminescent ionic transition-metal complexes for light-emitting electrochemical cells[J]. Angew. Chem. Int. Ed., 2012,51:8178-8211. doi: 10.1002/anie.v51.33

    43. [43]

      Q. Zhao, C. Huang, F. Li. Phosphorescent heavy-metal complexes for bioimaging[J]. Chem. Soc. Rev., 2011,40:2508-2524. doi: 10.1039/c0cs00114g

    44. [44]

      D.L. Ma, H.Z. He, K.H. Leung. Bioactive luminescent transition-metal complexes for biomedical applications[J]. Angew. Chem. Int. Ed., 2013,52:7666-7682. doi: 10.1002/anie.v52.30

    45. [45]

      J.A.G. Williams. Photochemistry and photophysics of coordination compounds: platinum[J]. Top Curr. Chem., 2007,281:205-268. doi: 10.1007/978-3-540-73349-2

    46. [46]

      W.T. Eckenhoff, R. Eisenberg. Molecular systems for light driven hydrogen production[J]. Dalton Trans., 2012,41:13004-13021. doi: 10.1039/c2dt30823a

    47. [47]

      C.W. Tang. Two-layer organic photovoltaic cell[J]. Appl. Phys. Lett., 1986,48:183-185. doi: 10.1063/1.96937

    48. [48]

      Z.X. Xu, V.A.L. Roy, K.H. Low. Bulk heterojunction photovoltaic cells based on tetra-methyl substituted copper(II) phthalocyanine:P3HT:PCBM composite[J]. Chem. Commun., 2011,47:9654-9656. doi: 10.1039/c1cc13827h

    49. [49]

      T.B. Fleetham, Z. Wang, J. Li. Exploring cyclometalated Ir complexes as donor materials for organic solar cells[J]. Inorg. Chem., 2013,52:7338-7343. doi: 10.1021/ic3023453

    50. [50]

      J.S. Wilson, N. Chawdhury, M.R.A. Al-Mandhary. The energy gap law for triplet states in Pt-containing conjugated polymers and monomers[J]. J. Am. Chem. Soc., 2001,123:9412-9417. doi: 10.1021/ja010986s

    51. [51]

      A. Kohler, J.S. Wilson, R.H. Friend. The singlet-triplet energy gap in organic and Pt-containing phenylene ethynylene polymers and monomers[J]. J. Chem. Phys., 2002,116:9457-9463. doi: 10.1063/1.1473194

    52. [52]

      K.S. Schanze, E.E. Silverman, X. Zhao. Intrachain triplet energy transfer in platinum-acetylide copolymers[J]. J. Phys. Chem. B, 2005,109:18451-18459. doi: 10.1021/jp052818i

    53. [53]

      F. Guo, Y.G. Kim, J.R. Reynolds. Platinum-acetylide polymer based solar cells: involvement of the triplet state for energy conversion[J]. Chem. Commun, 2006:1887-1889.  

    54. [54]

      W.Y. Wong, X.Z. Wang, Z. He. Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells[J]. Nat. Mater., 2007,6:521-527. doi: 10.1038/nmat1909

    55. [55]

      K. Glusac, M.E. Köse, H. Jiang. Triplet excited state in platinum-acetylide oligomers: triplet localization and effects of conformation[J]. J. Phys. Chem. B, 2007,111:929-940. doi: 10.1021/jp065892p

    56. [56]

      W.Y. Wong, X.Z. Wang, Z. He. Tuning the absorption, charge transport properties, and solar cell efficiency with the number of thienyl rings in platinum-containing poly(aryleneethynylene)s[J]. J. Am. Chem. Soc., 2007,129:14372-14380. doi: 10.1021/ja074959z

    57. [57]

      L. Liu, C.L. Ho, W.Y. Wong. Effect of oligothienyl chain length on tuning the solar cell performance in fluorine-based polyplatinynes[J]. Adv. Funct. Mater., 2008,18:2824-2833. doi: 10.1002/adfm.v18:18

    58. [58]

      W.Y. Wong, W.C. Chow, K.Y. Cheung. Harvesting solar energy using conjugated metallopolyyne donors containing electron-rich phenothiazine-oligothiophene moieties[J]. J. Organ. Chem., 2009,694:2717-2726. doi: 10.1016/j.jorganchem.2009.02.006

    59. [59]

      Q. Wang, W.Y. Wong. New low-bandgap polymetallaynes of platinum functionalized with a triphenylamine-benzothiadiazole donor-acceptor unit for solar cell applications[J]. Poly. Chem., 2011,2:432-440. doi: 10.1039/C0PY00273A

    60. [60]

      W.Y. Wong, X. Wang, H.L. Zhang. Synthesis, characterization and photovoltaic properties of a low-bandgap platinum(II) polyyne functionalized with a 3, 4-ethylenedioxythiophene-benzothiadiazole hybrid spacer[J]. J. Organ. Chem., 2008,693:3603-3612. doi: 10.1016/j.jorganchem.2008.08.025

    61. [61]

      N.S. Baek, S.K. Hau, H.L. Yip. High performance amorphous metallated pconjugated polymers for field-effect transistors and polymer solar cells[J]. Chem. Mater., 2008,20:5734-5736. doi: 10.1021/cm8016424

    62. [62]

      W.Y. Wong. Metallopolyyne polymers as new functional materials for photovoltaic and solar cell applications[J]. Macromol. Chem. Phys., 2008,209:14-24. doi: 10.1002/(ISSN)1521-3935

    63. [63]

      P.T. Wu, T. Bull, F.S. Kim. Organometallic donor-acceptor conjugated polymer semiconductors: tunable optical, electrochemical, charge transport, and photovoltaic properties[J]. Macromolecules, 2009,42:671-681. doi: 10.1021/ma8016508

    64. [64]

      C. Qin, Y. Fu, C.H. Chui. Tuning the donor-acceptor strength of lowbandgap platinum-acetylide polymers for near-infrared photovoltaic applications[J]. Macromol. Rapid Commun., 2011,32:1472-1477. doi: 10.1002/marc.v32.18

    65. [65]

      X.Z. Wang, W.Y. Wong, K.Y. Cheung. Polymer solar cells based on very narrow-bandgap polyplatinynes with photocurrents extended into the nearinfrared region[J]. Dalton Trans, 2008:5484-5494.  

    66. [66]

      X.-Z. Wang, Q. Wang, L. Yan. Very-low-bandgap metallopolyynes of platinum with a cyclopentadithiophenone ring for organic solar cells absorbing down to the near-infrared spectral region[J]. Macromol. Rapid Commun., 2010,31:861-867. doi: 10.1002/marc.v31:9/10

    67. [67]

      S.M. Aly, C.L. Ho, D. Fortin. Intrachain electron and energy transfer in conjugated organometallic oligomers and polymers[J]. Chem. Eur. J., 2008,14:8341-8352. doi: 10.1002/chem.v14:27

    68. [68]

      C. Qin, W.-Y. Wong, L. Wang. A water-soluble organometallic conjugated polyelectrolyte for the direct colorimetric detection of silver ion in aqueous media with high selectivity and sensitivity[J]. Macromolecules, 2011,44:483-489. doi: 10.1021/ma102373y

    69. [69]

      W.Y. Wong, C.L. Ho. Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes[J]. Acc. Chem. Res., 2010,43:1246-1256. doi: 10.1021/ar1000378

    70. [70]

      Q. Liu, C.-L. Ho, Y.H. Lo. Narrow bandgapplatinum(II)-containing polyynes with diketopyrrolopyrrole and isoindigo spacers[J]. J. Inorg. Organomet. Polym., 2015,25:159-168. doi: 10.1007/s10904-014-0120-2

    71. [71]

      Q.A. Alsulami, S.M. Aly, S. Goswami. Ultrafast excited-state dynamics of diketopyrrolopyrrole (DPP)-based materials: static versus diffusion-controlled electron transfer process[J]. J. Phys. Chem. C, 2015,119:15919-15925.  

    72. [72]

      S. Cekli, R.W. Winkel, E. Alarousu. Triplet excited state properties in variable gap p-conjugated donor-acceptor-donor chromophores[J]. Chem. Sci., 2016,7:3621-3631. doi: 10.1039/C5SC04578A

    73. [73]

      A.S. Gundogan, X. Meng, R.W. Winkel. Platinum carbon bond formation via Cu(I) catalyzed stille-type transmetallation: reaction scope and spectroscopic study of platinum-arylene complexes[J]. Dalton Trans., 2015,44:17932-17938. doi: 10.1039/C5DT00538H

    74. [74]

      S. Goswami, M.K. Gish, J. Wang. p-Conjugated organometallic isoindigo oligomer and polymer chromophores: singlet and triplet excited state dynamics and application in polymer solar cells[J]. ACS Appl. Mater. Interfaces, 2015,7:26828-26838. doi: 10.1021/acsami.5b09041

    75. [75]

      S. Goswami, R.W. Winkel, E. Alarousu. Photophysics of organometallic platinum(II) derivatives of the diketopyrrolopyrrole chromophore[J]. J. Phys. Chem. A, 2014,118:11735-11743. doi: 10.1021/jp509987p

    76. [76]

      M. Qian, R. Zhang, J. Hao. Dramatic enhancement of power conversion efficiency in polymer solar cells by conjugating very low ratio of triplet iridium complexes to PTB7[J]. Adv. Mater., 2015,27:3546-3552. doi: 10.1002/adma.v27.23

    77. [77]

      H. Zhen, Q. Hou, K. Li. Solution-processed bulk-heterojunction organic solar cells employing Ir complexes as electron donors[J]. J. Mater. Chem. A, 2014,2:12390-12396. doi: 10.1039/C4TA01526F

    78. [78]

      C.S. Kim, L.L. Tinker, B.F. DiSalle. Altering the thermodynamics of phase separation in inverted bulk-heterojunction organic solar cells[J]. Adv. Mater., 2009,21:3110-3115. doi: 10.1002/adma.v21:30

    79. [79]

      M.H. Yun, E. Lee, W. Lee. Enhanced performance of polymer bulk heterojunction solar cells employing multifunctional iridium complexes[J]. J. Mater. Chem. C, 2014,2:10195-10200. doi: 10.1039/C4TC01222D

    80. [80]

      C.M. Yang, C.H. Wu, H.H. Liao. Enhanced photovoltaic response of organic solar cell by singlet-to-triplet exciton conversion[J]. Appl. Phys. Lett., 2007,90133509. doi: 10.1063/1.2716209

    81. [81]

      W. Lee, T.H. Kwon, J. Kwon. Effect of main ligands on organic photovoltaic performance of Ir(III) complexes[J]. New J. Chem., 2011,35:2557-2563. doi: 10.1039/c1nj20446g

    82. [82]

      S. Archer, J.A. Weinstein. Charge-separated excited states in platinum(II) chromophores: photophysics, formation, stabilization and utilization in solar energy conversion[J]. Coordin. Chem. Rev., 2012,256:2530-2561. doi: 10.1016/j.ccr.2012.07.010

    83. [83]

      H. Xu, R. Chen, Q. Sun. Recent progress in metal-organic complexes for optoelectronic applications[J]. Chem. Soc. Rev., 2014,43:3259-3302. doi: 10.1039/c3cs60449g

    84. [84]

      F.R. Dai, H.M. Zhan, Q. Liu. Platinum(II)-bis(aryleneethynylene) complexes for solution-processible molecular bulk heterojunction solar cells[J]. Chem. Eur. J., 2012,18:1502-1511. doi: 10.1002/chem.v18.5

    85. [85]

      F. Guo, K. Ogawa, Y.G. Kim. A fulleropyrrolidine end-capped platinumacetylide triad: the mechanism of photoinduced charge transfer in organometallic photovoltaic cells[J]. Phys. Chem. Chem. Phys, 2007,9:2724-2734. doi: 10.1039/b700379j

    86. [86]

      G.L. Schulz, S. Holdcroft. Conjugated polymers bearing iridium complexes for triplet photovoltaic devices[J]. Chem. Mater., 2008,20:5351-5355. doi: 10.1021/cm800955f

    87. [87]

      C.Y. Liao, C.P. Chen, C.C. Chang. Synthesis of conjugated polymers bearing indacenodithiophene and cyclometalated platinum(II) units and their application in organic photovoltaics[J]. Sol. Energy Mater. Sol. Cells, 2013,109:111-119. doi: 10.1016/j.solmat.2012.09.033

    88. [88]

      J. Mei, K.R. Graham, R. Stalder. Synthesis of isoindigo-based oligothiophenes for molecular bulk heterojunction solar cells[J]. Org. Lett., 2010,12:660-663. doi: 10.1021/ol902512x

    89. [89]

      E. Wang, Z. Ma, Z. Zhang. An easily accessible isoindigo-based polymer for high-performance polymer solar cells[J]. J. Am. Chem. Soc., 2011,133:14244-14247. doi: 10.1021/ja206610u

    90. [90]

      J. Mei, D.H. Kim, A.L. Ayzner. Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors[J]. J. Am. Chem. Soc., 2011,133:20130-20133. doi: 10.1021/ja209328m

    91. [91]

      Y. Liang, Z. Xu, J. Xia. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%[J]. Adv. Mater., 2010,22:E135-E138. doi: 10.1002/adma.200903528

    92. [92]

      L. Huo, S. Zhang, X. Guo. Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers[J]. Angew. Chem., 2011,123:9871-9876. doi: 10.1002/ange.201103313

    93. [93]

      L. Dou, J. Gao, E. Richard. Systematic investigation of benzodithiopheneand diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells[J]. J. Am. Chem. Soc., 2012,134:10071-10079. doi: 10.1021/ja301460s

    94. [94]

      W. Li, A. Furlan, K.H. Hendriks. Efficient tandem and triple-junction polymer solar cells[J]. J. Am. Chem. Soc., 2013,135:5529-5532. doi: 10.1021/ja401434x

    95. [95]

      M. Zhang, X. Guo, S. Zhang. Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers[J]. Adv. Mater., 2014,26:1118-1123. doi: 10.1002/adma.201304427

    96. [96]

      L. Ye, S. Zhang, W. Zhao. Highly efficient 2D-conjugated benzodithiophenebased photovoltaic polymer with linear alkylthio side chain[J]. Chem. Mater., 2014,26:3603-3605. doi: 10.1021/cm501513n

    97. [97]

      S. Zhang, L. Ye, W. Zhao. Realizing over 10% efficiency in polymer solar cell by device optimization[J]. Sci. China Chem., 2015,58:248-256. doi: 10.1007/s11426-014-5273-x

    98. [98]

      Y.J. Kim, M.J. Kim, T.K. An. A new multi-functional conjugated polymer for use in high-performance bulk heterojunction solar cells[J]. Chem. Commun, 2015,51:11572-11575. doi: 10.1039/C5CC03815D

    99. [99]

      Z., J., M., etal.. Efficient solar cellsare more stable: theimpact of polymer molecular weight on performance of organic photovoltaics[J]. J. Mater. Chem. A, 2016,4:7274-7280. doi: 10.1039/C6TA00721J

    100. [100]

      C. Liu, K. Wang, X. Hu. Molecular weight effect on the efficiency of polymer solar cells[J]. ACS Appl. Mater. Interfaces, 2013,5:12163-12167. doi: 10.1021/am404157t

    101. [101]

      Y. Chi, P.T. Chou. Transition-metal phosphors with cyclometalating ligands: fundamentals and applications[J]. Chem. Soc. Rev., 2010,39:638-655. doi: 10.1039/B916237B

    102. [102]

      W.Y. Wong, C.L. Ho. Functional metallophosphors for effective charge carrier injection/transport: new robust OLED materials with emerging applications[J]. J. Mater. Chem., 2009,19:4457-4482. doi: 10.1039/b819943d

    103. [103]

      W.-Y. Wong, C.-L. Ho. Heavy metal organometallic electrophosphors derived from multi-component chromophores[J]. Coord. Chem. Rev., 2009,253:1709-1758. doi: 10.1016/j.ccr.2009.01.013

    104. [104]

      C. Ulbricht, B. Beyer, C. Friebe. Recent developments in the application of phosphorescent iridium (III) complex systems[J]. Adv. Mater., 2009,21:4418-4441. doi: 10.1002/adma.v21:44

    105. [105]

      L. Ye, S. Zhang, W. Ma. From binary to ternary solvent: morphology finetuning of D/A blends in PDPP3T-based polymer solar cells[J]. Adv. Mater., 2012,24:6335-6341. doi: 10.1002/adma.201202855

    106. [106]

      H. Yan, S. Swaraj, C. Wang. Influence of annealing and interfacial roughness on the performance of bilayer donor/acceptor polymer photovoltaic devices[J]. Adv. Funct. Mater., 2010,20:4329-4337. doi: 10.1002/adfm.v20.24

    107. [107]

      G Li, Y Yao, H. Yang. "Solvent annealing" effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes[J]. Adv. Funct, 2003,13:85-88. doi: 10.1002/adfm.200390011

    108. [108]

      F. Padinger, R.S. Rittberger, N.S. Sariciftci. Effects of postproduction treatment on plastic solar cells[J]. Adv. Funct. Mater., 2003,13:85-88. doi: 10.1002/adfm.200390011

    109. [109]

      W.L. Ma, C.Y. Yang, X. Gong. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology[J]. Adv. Funct. Mater., 2005,15:1617-1622. doi: 10.1002/(ISSN)1616-3028

    110. [110]

      J.K. Lee, W.L. Ma, C.J. Brabec. Processing additives for improved efficiency from bulk heterojunction solar cells[J]. J. Am. Chem. Soc., 2008,130:3619-3623. doi: 10.1021/ja710079w

    111. [111]

      Y. Yao, J. Hou, Z. Xu. Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells[J]. Adv. Funct. Mater., 2008,18:1783-1789. doi: 10.1002/adfm.200701459

    112. [112]

      T.W. Lee, H.C. Lee, O.O. Park. High-efficiency polymer light-emitting devices using organic salts: a multilayer structure to improve light-emitting electrochemical cells[J]. Appl. Phys. Lett., 2002,81:214-216. doi: 10.1063/1.1490635

    113. [113]

      Y. Cao, G. Yu, A.J. Heeger. Efficient, fast response light-emitting electrochemical cells: electroluminescent and solid electrolyte polymers with interpenetrating network morphology[J]. Appl. Phys. Lett., 1996,68:3218-3220. doi: 10.1063/1.116442

  • 加载中
    1. [1]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    2. [2]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    3. [3]

      Fuzheng ZhangChao ShiJiale LiFulin JiaXinyu LiuFeiyang LiXinyu BaiQiuxia LiAihua YuanGuohua Xie . B-embedded narrowband pure near-infrared (NIR) phosphorescent iridium(Ⅲ) complexes and solution-processed OLED application. Chinese Chemical Letters, 2025, 36(1): 109596-. doi: 10.1016/j.cclet.2024.109596

    4. [4]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

    5. [5]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    6. [6]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    7. [7]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    8. [8]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    9. [9]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    10. [10]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    11. [11]

      Ya-Ping LiuZhi-Rong GuiZhen-Wen ZhangSai-Kang WangWei LangYanzhu LiuQian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769

    12. [12]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    13. [13]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    14. [14]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    15. [15]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    16. [16]

      Wenjuan JinZelong ChenYi WangJiaxuan LiJiahui LiYuxin PeiZhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328

    17. [17]

      Zhengyi ShiJie YinYang XiaoZhangrong HouFei SongJianping WangQingyi TongChangxing QiYonghui Zhang . Unprecedented sesquiterpene-polycyclic polyprenylated acylphloroglucinol adduct against acute myeloid leukemia via inhibiting mitochondrial complex Ⅴ. Chinese Chemical Letters, 2024, 35(10): 109458-. doi: 10.1016/j.cclet.2023.109458

    18. [18]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    19. [19]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    20. [20]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

Metrics
  • PDF Downloads(0)
  • Abstract views(699)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return