Heavy metal complex containing organic/polymer materials for bulk-heterojunction photovoltaic devices
- Corresponding author: You-Tian Tao, chemistry.iamyttao@njtech.edu.cn Wei Huang, iamwhuang@njtech.edu.cn
Citation:
Ya-Nan Liu, Shi-Fan Wang, You-Tian Tao, Wei Huang. Heavy metal complex containing organic/polymer materials for bulk-heterojunction photovoltaic devices[J]. Chinese Chemical Letters,
;2016, 27(8): 1250-1258.
doi:
10.1016/j.cclet.2016.07.018
C. Li, M. Liu, N.G Pschirer. Polyphenylene-based materials for organic photovoltaics[J]. Chem. Rev, 2010,110:6817-6855. doi: 10.1021/cr100052z
F.C. Krebs. Fabrication and processing of polymer solar cells: a review of printing and coating techniques[J]. Sol. Energy Mater. Sol. Cells, 2009,93:394-412. doi: 10.1016/j.solmat.2008.10.004
M. Helgesen, R. Søndergaard, F.C. Krebs. Advanced materials and processes for polymer solar cell devices[J]. J. Mater. Chem., 2010,20:36-60. doi: 10.1039/B913168J
R. Søndergaard, M. Hösel, D. Angmo. Roll-to-roll fabrication of polymer solar cells[J]. Mater. Today, 2012,15:36-49. doi: 10.1016/S1369-7021(12)70019-6
T.D. Nielsen, C. Cruickshank, S. Foged. Business, market and intellectual property analysis of polymer solar cells[J]. Sol Energy Mater. Sol. Cells, 2010,94:1553-1571. doi: 10.1016/j.solmat.2010.04.074
J. Chen, Y. Cao. Development of novel conjugated donor polymers for highefficiency bulk-heterojunction photovoltaic devices[J]. Acc. Chem. Res., 2009,42:1709-1718. doi: 10.1021/ar900061z
G. Dennler, M.C. Scharber, C.J. Brabec. Polymer-fullerene bulk-heterojunction solar cells[J]. Adv. Mater., 2009,21:1323-1338. doi: 10.1002/adma.v21:13
S.H. Chan, C.-S. Lai, H.L. Chen. Highly efficient P3HT: C60 solar cell free of annealing process[J]. Macromolecules, 2011,44:8886-8891. doi: 10.1021/ma201425d
E. Wang, L. Hou, Z. Wang. An easily synthesized blue polymer for highperformance polymer solar cells[J]. Adv. Mater., 2010,22:5240-5244. doi: 10.1002/adma.201002225
J. Peet, J.Y. Kim, N.E. Coates. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols[J]. Nat. Mater., 2007,6:497-500. doi: 10.1038/nmat1928
L. Lu, T. Zheng, Q. Wu. Recent advances in bulk heterojunction polymer solar cells[J]. Chem. Rev., 2015,115:12666-12731. doi: 10.1021/acs.chemrev.5b00098
Y. Zhang, X.-D. Dang, C. Kim. Effect of charge recombination on the fill factor of small molecule bulk heterojunction solar cells[J]. Adv. Energy Mater., 2011,1:610-617. doi: 10.1002/aenm.201100040
M.M. Wienk, J.M. Kroon, W.J.H. Verhees. Efficient methano[J]. Angew. Chem., 2003,115:3493-3497. doi: 10.1002/ange.200351647
W. Chen, T. Salim, H. Fan. Quinoxaline-functionalized C60 derivatives as electron acceptors in organic solar cells[J]. RSC Adv., 2014,4:25291-25301. doi: 10.1039/c4ra02911a
G. Zhao, Y. He, Y. Li. 6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and Indene-C60 bisadduct by device optimization[J]. Adv. Mater, 2010,22:4355-4358. doi: 10.1002/adma.v22:39
Q. Zhang, B. Kan, F. Liu. Small-molecule solar cells with efficiency over 9%[J]. Nat. Photon., 2015,9:35-41.
B. Kan, Q. Zhang, M. Li. Solution-processed organic solar cells based on dialkylthiol-substituted benzodithiophene unit with efficiency near 10%[J]. J. Am. Chem. Soc., 2014,136:15529-15532. doi: 10.1021/ja509703k
Y. Liu, J. Zhao, Z. Li. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells[J]. Nat. Commun., 2014,5:1-8.
L. Dou, C.C. Chen, K. Yoshimura. Synthesis of 5H-dithieno[J]. Macromolecules, 2013,46:3384-3390. doi: 10.1021/ma400452j
T.L. Nguyen, H. Choi, S.J. Ko. Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a 300 nm thick conventional single-cell device[J]. Energy Environ. Sci., 2014,7:3040-3051. doi: 10.1039/C4EE01529K
C.C. Chen, W.H. Chang, K. Yoshimura. An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%[J]. Adv. Mater., 2014,26:5670-5677. doi: 10.1002/adma.201402072
H. Zhou, Y. Zhang, C.K. Mai. Polymer Homo-Tandem Solar Cells with best efficiency of 11.3%[J]. Adv. Mater., 2015,27:1767-1773. doi: 10.1002/adma.201404220
W. Cai, X. Gong, Y. Cao. Polymer solar cells: recent development and possible routes for improvement in the performance[J]. Sol. Energy Mater. Sol. Cells, 2010,94:114-127. doi: 10.1016/j.solmat.2009.10.005
I. Etxebarria, J. Ajuria, R. Pacios. Polymer: fullerene solar cells: materials, processing issues, and cell layouts to reach power conversion efficiency over 10%, a review[J]. J. Photon. Energy, 2015,5057214. doi: 10.1117/1.JPE.5.057214
H. Benten, D. Mori, H. Ohkita. Recent research progress of polymer donor/polymer acceptor blend solar cells[J]. J. Mater. Chem. A, 2016,4:5340-5365. doi: 10.1039/C5TA10759H
T. Jiang, J. Yang, Y. Tao. Random terpolymer with a cost-effective monomer and comparable efficiency to PTB7-Th for bulk-heterojunction polymer solar cells[J]. Poly. Chem., 2016,7:926-932. doi: 10.1039/C5PY01771H
J. Lee, H. Ko, E. Song. Naphthodithiophene-based conjugated polymer with linear, planar backbone conformation and strong intermolecular packing for efficient organic solar cells[J]. ACS Appl Mater. Interfaces, 2015,7:21159-21169. doi: 10.1021/acsami.5b04884
L. Lu, L. Yu. Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it[J]. Adv. Mater., 2014,26:4413-4430. doi: 10.1002/adma.v26.26
J.J.M. Halls, K. Pichler, R.H. Friend. Exciton diffusion and dissociation in a poly (p-phenylenevinylene)/C60 heterojunction photovoltaic cell[J]. Appl. Phys. Lett., 1996,68:3120-3122. doi: 10.1063/1.115797
D.E. Markov, C. Tanase, P.W.M. Blom. Simultaneous enhancement of charge transport and exciton diffusion in poly(p-phenylenevinylene) derivatives[J]. Phys. Rev. B, 2005,72045217. doi: 10.1103/PhysRevB.72.045217
Y. Shao, Y. Yang. Efficient organic heterojunction photovoltaic cells based on triplet materials[J]. Adv. Mater., 2005,17:2841-2844. doi: 10.1002/(ISSN)1521-4095
J. Yu, J. Huang, H. Lin. Exciton diffusion length analysis of mixed donor materials in organic solar cells by doping with phosphorescent iridium complex[J]. J. Appl. Phys., 2010,108113111. doi: 10.1063/1.3514545
M.K. Etherington, J. Wang, P.C.Y. Chow. Recombination pathways in polymer fullerene photovoltaics observed through spin polarization measurements[J]. Appl. Phys. Lett., 2014,104063304. doi: 10.1063/1.4865203
V.D. Mihailetchi, L.J.A. Koster, J.C. Hummelen. Photocurrent generation in polymer-fullerene bulk heterojunctions[J]. Phys. Rev. Lett., 2004,9216601.
T. Offermans, S.C.J. Meskers, R.A.J. Janssen. Charge recombination in a poly(-para-phenylenevinyl-ene)-fullerene derivative composite film studied by transient, nonresonant, hole-burning spectroscopy[J]. J. Chem. Phys., 2003,119:10924-10929. doi: 10.1063/1.1619946
S. Westenhoff, I.A. Howard, J.M. Hodgkiss. Charge recombination in organic photovoltaic devices with high open-circuit voltages[J]. J. Am. Chem. Soc., 2008,130:13653-13658. doi: 10.1021/ja803054g
T. Basel, U. Huynh, T. Zheng. Optical, electrical, and magnetic studies of organic solar cells based on low bandgap copolymer with spin 1/2 radical additives,[J]. Adv Funct. Mater., 2015,25:1895-1902. doi: 10.1002/adfm.201403191
J.P. Wang, A. Chepelianskii, F. Gao. Control of exciton spin statistics through spin polarization in organic optoelectronic devices[J]. Nat. Commun., 2012,3:1-6.
J.G. Mei, K. Ogawa, Y.G. Kim. Low-band-gap platinum acetylide polymers as active materials for organic solar cells[J]. ACS Appl. Mater. Interfaces, 2009,1:150-161. doi: 10.1021/am800104k
T.A. Clem, D.F.J. Kavulak, E.J. Westling. Cyclometalated platinum polymers: synthesis, photophysical properties, and photovoltaic performance[J]. Chem. Mater., 2010,22:1977-1987. doi: 10.1021/cm9029038
M.A. Baldo, D.F. O'brien, Y. You. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 1998,395:151-154. doi: 10.1038/25954
R.D. Costa, E. Ortí, H.J. Bolink. Luminescent ionic transition-metal complexes for light-emitting electrochemical cells[J]. Angew. Chem. Int. Ed., 2012,51:8178-8211. doi: 10.1002/anie.v51.33
Q. Zhao, C. Huang, F. Li. Phosphorescent heavy-metal complexes for bioimaging[J]. Chem. Soc. Rev., 2011,40:2508-2524. doi: 10.1039/c0cs00114g
D.L. Ma, H.Z. He, K.H. Leung. Bioactive luminescent transition-metal complexes for biomedical applications[J]. Angew. Chem. Int. Ed., 2013,52:7666-7682. doi: 10.1002/anie.v52.30
J.A.G. Williams. Photochemistry and photophysics of coordination compounds: platinum[J]. Top Curr. Chem., 2007,281:205-268. doi: 10.1007/978-3-540-73349-2
W.T. Eckenhoff, R. Eisenberg. Molecular systems for light driven hydrogen production[J]. Dalton Trans., 2012,41:13004-13021. doi: 10.1039/c2dt30823a
C.W. Tang. Two-layer organic photovoltaic cell[J]. Appl. Phys. Lett., 1986,48:183-185. doi: 10.1063/1.96937
Z.X. Xu, V.A.L. Roy, K.H. Low. Bulk heterojunction photovoltaic cells based on tetra-methyl substituted copper(II) phthalocyanine:P3HT:PCBM composite[J]. Chem. Commun., 2011,47:9654-9656. doi: 10.1039/c1cc13827h
T.B. Fleetham, Z. Wang, J. Li. Exploring cyclometalated Ir complexes as donor materials for organic solar cells[J]. Inorg. Chem., 2013,52:7338-7343. doi: 10.1021/ic3023453
J.S. Wilson, N. Chawdhury, M.R.A. Al-Mandhary. The energy gap law for triplet states in Pt-containing conjugated polymers and monomers[J]. J. Am. Chem. Soc., 2001,123:9412-9417. doi: 10.1021/ja010986s
A. Kohler, J.S. Wilson, R.H. Friend. The singlet-triplet energy gap in organic and Pt-containing phenylene ethynylene polymers and monomers[J]. J. Chem. Phys., 2002,116:9457-9463. doi: 10.1063/1.1473194
K.S. Schanze, E.E. Silverman, X. Zhao. Intrachain triplet energy transfer in platinum-acetylide copolymers[J]. J. Phys. Chem. B, 2005,109:18451-18459. doi: 10.1021/jp052818i
F. Guo, Y.G. Kim, J.R. Reynolds. Platinum-acetylide polymer based solar cells: involvement of the triplet state for energy conversion[J]. Chem. Commun, 2006:1887-1889.
W.Y. Wong, X.Z. Wang, Z. He. Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells[J]. Nat. Mater., 2007,6:521-527. doi: 10.1038/nmat1909
K. Glusac, M.E. Köse, H. Jiang. Triplet excited state in platinum-acetylide oligomers: triplet localization and effects of conformation[J]. J. Phys. Chem. B, 2007,111:929-940. doi: 10.1021/jp065892p
W.Y. Wong, X.Z. Wang, Z. He. Tuning the absorption, charge transport properties, and solar cell efficiency with the number of thienyl rings in platinum-containing poly(aryleneethynylene)s[J]. J. Am. Chem. Soc., 2007,129:14372-14380. doi: 10.1021/ja074959z
L. Liu, C.L. Ho, W.Y. Wong. Effect of oligothienyl chain length on tuning the solar cell performance in fluorine-based polyplatinynes[J]. Adv. Funct. Mater., 2008,18:2824-2833. doi: 10.1002/adfm.v18:18
W.Y. Wong, W.C. Chow, K.Y. Cheung. Harvesting solar energy using conjugated metallopolyyne donors containing electron-rich phenothiazine-oligothiophene moieties[J]. J. Organ. Chem., 2009,694:2717-2726. doi: 10.1016/j.jorganchem.2009.02.006
Q. Wang, W.Y. Wong. New low-bandgap polymetallaynes of platinum functionalized with a triphenylamine-benzothiadiazole donor-acceptor unit for solar cell applications[J]. Poly. Chem., 2011,2:432-440. doi: 10.1039/C0PY00273A
W.Y. Wong, X. Wang, H.L. Zhang. Synthesis, characterization and photovoltaic properties of a low-bandgap platinum(II) polyyne functionalized with a 3, 4-ethylenedioxythiophene-benzothiadiazole hybrid spacer[J]. J. Organ. Chem., 2008,693:3603-3612. doi: 10.1016/j.jorganchem.2008.08.025
N.S. Baek, S.K. Hau, H.L. Yip. High performance amorphous metallated pconjugated polymers for field-effect transistors and polymer solar cells[J]. Chem. Mater., 2008,20:5734-5736. doi: 10.1021/cm8016424
W.Y. Wong. Metallopolyyne polymers as new functional materials for photovoltaic and solar cell applications[J]. Macromol. Chem. Phys., 2008,209:14-24. doi: 10.1002/(ISSN)1521-3935
P.T. Wu, T. Bull, F.S. Kim. Organometallic donor-acceptor conjugated polymer semiconductors: tunable optical, electrochemical, charge transport, and photovoltaic properties[J]. Macromolecules, 2009,42:671-681. doi: 10.1021/ma8016508
C. Qin, Y. Fu, C.H. Chui. Tuning the donor-acceptor strength of lowbandgap platinum-acetylide polymers for near-infrared photovoltaic applications[J]. Macromol. Rapid Commun., 2011,32:1472-1477. doi: 10.1002/marc.v32.18
X.Z. Wang, W.Y. Wong, K.Y. Cheung. Polymer solar cells based on very narrow-bandgap polyplatinynes with photocurrents extended into the nearinfrared region[J]. Dalton Trans, 2008:5484-5494.
X.-Z. Wang, Q. Wang, L. Yan. Very-low-bandgap metallopolyynes of platinum with a cyclopentadithiophenone ring for organic solar cells absorbing down to the near-infrared spectral region[J]. Macromol. Rapid Commun., 2010,31:861-867. doi: 10.1002/marc.v31:9/10
S.M. Aly, C.L. Ho, D. Fortin. Intrachain electron and energy transfer in conjugated organometallic oligomers and polymers[J]. Chem. Eur. J., 2008,14:8341-8352. doi: 10.1002/chem.v14:27
C. Qin, W.-Y. Wong, L. Wang. A water-soluble organometallic conjugated polyelectrolyte for the direct colorimetric detection of silver ion in aqueous media with high selectivity and sensitivity[J]. Macromolecules, 2011,44:483-489. doi: 10.1021/ma102373y
W.Y. Wong, C.L. Ho. Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes[J]. Acc. Chem. Res., 2010,43:1246-1256. doi: 10.1021/ar1000378
Q. Liu, C.-L. Ho, Y.H. Lo. Narrow bandgapplatinum(II)-containing polyynes with diketopyrrolopyrrole and isoindigo spacers[J]. J. Inorg. Organomet. Polym., 2015,25:159-168. doi: 10.1007/s10904-014-0120-2
Q.A. Alsulami, S.M. Aly, S. Goswami. Ultrafast excited-state dynamics of diketopyrrolopyrrole (DPP)-based materials: static versus diffusion-controlled electron transfer process[J]. J. Phys. Chem. C, 2015,119:15919-15925.
S. Cekli, R.W. Winkel, E. Alarousu. Triplet excited state properties in variable gap p-conjugated donor-acceptor-donor chromophores[J]. Chem. Sci., 2016,7:3621-3631. doi: 10.1039/C5SC04578A
A.S. Gundogan, X. Meng, R.W. Winkel. Platinum carbon bond formation via Cu(I) catalyzed stille-type transmetallation: reaction scope and spectroscopic study of platinum-arylene complexes[J]. Dalton Trans., 2015,44:17932-17938. doi: 10.1039/C5DT00538H
S. Goswami, M.K. Gish, J. Wang. p-Conjugated organometallic isoindigo oligomer and polymer chromophores: singlet and triplet excited state dynamics and application in polymer solar cells[J]. ACS Appl. Mater. Interfaces, 2015,7:26828-26838. doi: 10.1021/acsami.5b09041
S. Goswami, R.W. Winkel, E. Alarousu. Photophysics of organometallic platinum(II) derivatives of the diketopyrrolopyrrole chromophore[J]. J. Phys. Chem. A, 2014,118:11735-11743. doi: 10.1021/jp509987p
M. Qian, R. Zhang, J. Hao. Dramatic enhancement of power conversion efficiency in polymer solar cells by conjugating very low ratio of triplet iridium complexes to PTB7[J]. Adv. Mater., 2015,27:3546-3552. doi: 10.1002/adma.v27.23
H. Zhen, Q. Hou, K. Li. Solution-processed bulk-heterojunction organic solar cells employing Ir complexes as electron donors[J]. J. Mater. Chem. A, 2014,2:12390-12396. doi: 10.1039/C4TA01526F
C.S. Kim, L.L. Tinker, B.F. DiSalle. Altering the thermodynamics of phase separation in inverted bulk-heterojunction organic solar cells[J]. Adv. Mater., 2009,21:3110-3115. doi: 10.1002/adma.v21:30
M.H. Yun, E. Lee, W. Lee. Enhanced performance of polymer bulk heterojunction solar cells employing multifunctional iridium complexes[J]. J. Mater. Chem. C, 2014,2:10195-10200. doi: 10.1039/C4TC01222D
C.M. Yang, C.H. Wu, H.H. Liao. Enhanced photovoltaic response of organic solar cell by singlet-to-triplet exciton conversion[J]. Appl. Phys. Lett., 2007,90133509. doi: 10.1063/1.2716209
W. Lee, T.H. Kwon, J. Kwon. Effect of main ligands on organic photovoltaic performance of Ir(III) complexes[J]. New J. Chem., 2011,35:2557-2563. doi: 10.1039/c1nj20446g
S. Archer, J.A. Weinstein. Charge-separated excited states in platinum(II) chromophores: photophysics, formation, stabilization and utilization in solar energy conversion[J]. Coordin. Chem. Rev., 2012,256:2530-2561. doi: 10.1016/j.ccr.2012.07.010
H. Xu, R. Chen, Q. Sun. Recent progress in metal-organic complexes for optoelectronic applications[J]. Chem. Soc. Rev., 2014,43:3259-3302. doi: 10.1039/c3cs60449g
F.R. Dai, H.M. Zhan, Q. Liu. Platinum(II)-bis(aryleneethynylene) complexes for solution-processible molecular bulk heterojunction solar cells[J]. Chem. Eur. J., 2012,18:1502-1511. doi: 10.1002/chem.v18.5
F. Guo, K. Ogawa, Y.G. Kim. A fulleropyrrolidine end-capped platinumacetylide triad: the mechanism of photoinduced charge transfer in organometallic photovoltaic cells[J]. Phys. Chem. Chem. Phys, 2007,9:2724-2734. doi: 10.1039/b700379j
G.L. Schulz, S. Holdcroft. Conjugated polymers bearing iridium complexes for triplet photovoltaic devices[J]. Chem. Mater., 2008,20:5351-5355. doi: 10.1021/cm800955f
C.Y. Liao, C.P. Chen, C.C. Chang. Synthesis of conjugated polymers bearing indacenodithiophene and cyclometalated platinum(II) units and their application in organic photovoltaics[J]. Sol. Energy Mater. Sol. Cells, 2013,109:111-119. doi: 10.1016/j.solmat.2012.09.033
J. Mei, K.R. Graham, R. Stalder. Synthesis of isoindigo-based oligothiophenes for molecular bulk heterojunction solar cells[J]. Org. Lett., 2010,12:660-663. doi: 10.1021/ol902512x
E. Wang, Z. Ma, Z. Zhang. An easily accessible isoindigo-based polymer for high-performance polymer solar cells[J]. J. Am. Chem. Soc., 2011,133:14244-14247. doi: 10.1021/ja206610u
J. Mei, D.H. Kim, A.L. Ayzner. Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors[J]. J. Am. Chem. Soc., 2011,133:20130-20133. doi: 10.1021/ja209328m
Y. Liang, Z. Xu, J. Xia. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%[J]. Adv. Mater., 2010,22:E135-E138. doi: 10.1002/adma.200903528
L. Huo, S. Zhang, X. Guo. Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers[J]. Angew. Chem., 2011,123:9871-9876. doi: 10.1002/ange.201103313
L. Dou, J. Gao, E. Richard. Systematic investigation of benzodithiopheneand diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells[J]. J. Am. Chem. Soc., 2012,134:10071-10079. doi: 10.1021/ja301460s
W. Li, A. Furlan, K.H. Hendriks. Efficient tandem and triple-junction polymer solar cells[J]. J. Am. Chem. Soc., 2013,135:5529-5532. doi: 10.1021/ja401434x
M. Zhang, X. Guo, S. Zhang. Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers[J]. Adv. Mater., 2014,26:1118-1123. doi: 10.1002/adma.201304427
L. Ye, S. Zhang, W. Zhao. Highly efficient 2D-conjugated benzodithiophenebased photovoltaic polymer with linear alkylthio side chain[J]. Chem. Mater., 2014,26:3603-3605. doi: 10.1021/cm501513n
S. Zhang, L. Ye, W. Zhao. Realizing over 10% efficiency in polymer solar cell by device optimization[J]. Sci. China Chem., 2015,58:248-256. doi: 10.1007/s11426-014-5273-x
Y.J. Kim, M.J. Kim, T.K. An. A new multi-functional conjugated polymer for use in high-performance bulk heterojunction solar cells[J]. Chem. Commun, 2015,51:11572-11575. doi: 10.1039/C5CC03815D
Z., J., M., etal.. Efficient solar cellsare more stable: theimpact of polymer molecular weight on performance of organic photovoltaics[J]. J. Mater. Chem. A, 2016,4:7274-7280. doi: 10.1039/C6TA00721J
C. Liu, K. Wang, X. Hu. Molecular weight effect on the efficiency of polymer solar cells[J]. ACS Appl. Mater. Interfaces, 2013,5:12163-12167. doi: 10.1021/am404157t
Y. Chi, P.T. Chou. Transition-metal phosphors with cyclometalating ligands: fundamentals and applications[J]. Chem. Soc. Rev., 2010,39:638-655. doi: 10.1039/B916237B
W.Y. Wong, C.L. Ho. Functional metallophosphors for effective charge carrier injection/transport: new robust OLED materials with emerging applications[J]. J. Mater. Chem., 2009,19:4457-4482. doi: 10.1039/b819943d
W.-Y. Wong, C.-L. Ho. Heavy metal organometallic electrophosphors derived from multi-component chromophores[J]. Coord. Chem. Rev., 2009,253:1709-1758. doi: 10.1016/j.ccr.2009.01.013
C. Ulbricht, B. Beyer, C. Friebe. Recent developments in the application of phosphorescent iridium (III) complex systems[J]. Adv. Mater., 2009,21:4418-4441. doi: 10.1002/adma.v21:44
L. Ye, S. Zhang, W. Ma. From binary to ternary solvent: morphology finetuning of D/A blends in PDPP3T-based polymer solar cells[J]. Adv. Mater., 2012,24:6335-6341. doi: 10.1002/adma.201202855
H. Yan, S. Swaraj, C. Wang. Influence of annealing and interfacial roughness on the performance of bilayer donor/acceptor polymer photovoltaic devices[J]. Adv. Funct. Mater., 2010,20:4329-4337. doi: 10.1002/adfm.v20.24
G Li, Y Yao, H. Yang. "Solvent annealing" effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes[J]. Adv. Funct, 2003,13:85-88. doi: 10.1002/adfm.200390011
F. Padinger, R.S. Rittberger, N.S. Sariciftci. Effects of postproduction treatment on plastic solar cells[J]. Adv. Funct. Mater., 2003,13:85-88. doi: 10.1002/adfm.200390011
W.L. Ma, C.Y. Yang, X. Gong. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology[J]. Adv. Funct. Mater., 2005,15:1617-1622. doi: 10.1002/(ISSN)1616-3028
J.K. Lee, W.L. Ma, C.J. Brabec. Processing additives for improved efficiency from bulk heterojunction solar cells[J]. J. Am. Chem. Soc., 2008,130:3619-3623. doi: 10.1021/ja710079w
Y. Yao, J. Hou, Z. Xu. Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells[J]. Adv. Funct. Mater., 2008,18:1783-1789. doi: 10.1002/adfm.200701459
T.W. Lee, H.C. Lee, O.O. Park. High-efficiency polymer light-emitting devices using organic salts: a multilayer structure to improve light-emitting electrochemical cells[J]. Appl. Phys. Lett., 2002,81:214-216. doi: 10.1063/1.1490635
Y. Cao, G. Yu, A.J. Heeger. Efficient, fast response light-emitting electrochemical cells: electroluminescent and solid electrolyte polymers with interpenetrating network morphology[J]. Appl. Phys. Lett., 1996,68:3218-3220. doi: 10.1063/1.116442
Chengcheng Xie , Chengyi Xiao , Hongshuo Niu , Guitao Feng , Weiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849
Lihua Ma , Song Guo , Zhi-Ming Zhang , Jin-Zhong Wang , Tong-Bu Lu , Xian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661
Fuzheng Zhang , Chao Shi , Jiale Li , Fulin Jia , Xinyu Liu , Feiyang Li , Xinyu Bai , Qiuxia Li , Aihua Yuan , Guohua Xie . B-embedded narrowband pure near-infrared (NIR) phosphorescent iridium(Ⅲ) complexes and solution-processed OLED application. Chinese Chemical Letters, 2025, 36(1): 109596-. doi: 10.1016/j.cclet.2024.109596
Jinyu Guo , Yandai Lin , Shaohua He , Yueqing Chen , Fenglu Li , Renjie Ruan , Gaoxing Pan , Hexin Nan , Jibin Song , Jin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
Mengjuan Sun , Muye Zhou , Yifang Xiao , Hailei Tang , Jinhua Chen , Ruitao Zhang , Chunjiayu Li , Qi Ya , Qian Chen , Jiasheng Tu , Qiyue Wang , Chunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110
Yuanjin Chen , Xianghui Shi , Dajiang Huang , Junnian Wei , Zhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292
Peng Meng , Qian-Cheng Luo , Aidan Brock , Xiaodong Wang , Mahboobeh Shahbazi , Aaron Micallef , John McMurtrie , Dongchen Qi , Yan-Zhen Zheng , Jingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542
Jingwen Zhao , Jianpu Tang , Zhen Cui , Limin Liu , Dayong Yang , Chi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303
Ya-Ping Liu , Zhi-Rong Gui , Zhen-Wen Zhang , Sai-Kang Wang , Wei Lang , Yanzhu Liu , Qian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO−. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769
Pingping HAO , Fangfang LI , Yawen WANG , Houfen LI , Xiao ZHANG , Rui LI , Lei WANG , Jianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054
Xiangan Song , Shaogang Shen , Mengyao Lu , Ying Wang , Yong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118
Yingying Yan , Wanhe Jia , Rui Cai , Chun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819
Jian Peng , Yue Jiang , Shuangyu Wu , Yanran Cheng , Jingyu Liang , Yixin Wang , Zhuo Li , Sijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903
Wenjuan Jin , Zelong Chen , Yi Wang , Jiaxuan Li , Jiahui Li , Yuxin Pei , Zhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328
Zhengyi Shi , Jie Yin , Yang Xiao , Zhangrong Hou , Fei Song , Jianping Wang , Qingyi Tong , Changxing Qi , Yonghui Zhang . Unprecedented sesquiterpene-polycyclic polyprenylated acylphloroglucinol adduct against acute myeloid leukemia via inhibiting mitochondrial complex Ⅴ. Chinese Chemical Letters, 2024, 35(10): 109458-. doi: 10.1016/j.cclet.2023.109458
Rong-Nan Yi , Wei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194
Bing Shen , Tongwei Yuan , Wenshuang Zhang , Yang Chen , Jiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490
Xiaoling WANG , Hongwu ZHANG , Daofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214