Citation: Yu Rui, Jiang Cheng-Fa, Chu Wei, Ran Mao-Fei, Sun Wen-Jing. Decoration of CNTs' surface by Fe3O4 nanoparticles: Influence of ultrasonication time on the magnetic and structural properties[J]. Chinese Chemical Letters, ;2017, 28(2): 302-306. doi: 10.1016/j.cclet.2016.07.014 shu

Decoration of CNTs' surface by Fe3O4 nanoparticles: Influence of ultrasonication time on the magnetic and structural properties

  • Corresponding author: Ran Mao-Fei, murphy_ran@foxmail.com Sun Wen-Jing, swj_gdmc@163.com
  • Received Date: 4 May 2016
    Revised Date: 13 June 2016
    Accepted Date: 6 July 2016
    Available Online: 18 February 2016

Figures(6)

  • The decoration of CNTs surface by magnetic nanoparticles was achieved by an ultrasonication-assisted hydrothermal method (UAHM). The effect of ultrasonication time on the crystal structure, magnetic performance, and chemical composition of the magnetic CNT composite material was determined. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and vibrating sample magnetometry were used to characterize the physical, chemical, and magnetic properties of the composites. The composites synthesized via the UAHM exhibited superparamagnetic properties. The ultrasonication time was a critical factor that affected the structure and magnetic performance of the composites. By simply controlling the ultrasonication time, the crystal phase structure of Fe oxide could be selectively modulated and the magnetic performance of the MCs could be effectively tuned.
  • 加载中
    1. [1]

      S. Iijima. Helical microtubules of graphitic carbon[J]. Nature, 1991,354:56-58. doi: 10.1038/354056a0

    2. [2]

      M.F. Ran, W. Chu, J. Wen, Y.F. Li. Promoting effects of chromium on Ni/MgO catalysts for CNTs synthesis by chemical vapor deposition method[J]. Chem. J. Chin. Univ., 2009,30:231-235.

    3. [3]

      J.F. Ren, S. Shen, D.G. Wang. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2[J]. Biomaterials, 2012,33:3324-3333. doi: 10.1016/j.biomaterials.2012.01.025

    4. [4]

      Y.G. Wang, L. Shi, L. Gao. The removal of lead ions from aqueous solution by using magnetic hydroxypropyl chitosan/oxidized multiwalled carbon nanotubes composites[J]. J. Colloid Interface Sci., 2015,451:7-14. doi: 10.1016/j.jcis.2015.03.048

    5. [5]

      M. Yadav, K.Y. Rhee, S.J. Park, D. Hui. Mechanical properties of Fe3O4/GO/chitosan composites[J]. Compos. Part B-Eng., 2014,66:89-96. doi: 10.1016/j.compositesb.2014.04.034

    6. [6]

      P.F. Zong, S.F. Wang, Y.L. Zhao. Synthesis and application of magnetic graphene/iron oxides composite for the removal of U (VI) from aqueous solutions[J]. Chem. Eng. J., 2013,220:45-52. doi: 10.1016/j.cej.2013.01.038

    7. [7]

      Y. Zhang, Y.H. Bai, B. Yan. Functionalized carbon nanotubes for potential medicinal applications[J]. Drug Discov. Today, 2010,15:428-435. doi: 10.1016/j.drudis.2010.04.005

    8. [8]

      M.H. Yeh, Y.S. Li, G.L. Chen. Facile synthesis of boron-doped Graphene nanosheets with hierarchical microstructure at atmosphere pressure for metalfree electrochemical detection of hydrogen peroxide[J]. Electrochim. Acta, 2015,172:52-60. doi: 10.1016/j.electacta.2015.01.210

    9. [9]

      Y.J. Yao, S.D. Miao, S.Z. Liu. Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite, Chem[J]. Eng. J., 2012,184:326-332.

    10. [10]

      R.H. Wu, J.H. Liu, L.Q. Zhao. Hydrothermal preparation of magnetic Fe3O4@C nanoparticles for dye adsorption[J]. J. Environ. Chem. Eng., 2014,2:907-913. doi: 10.1016/j.jece.2014.02.005

    11. [11]

      N.S. Ye, Y.L. Xie, P.Z. Shi, T. Gao, J.C. Ma. Synthesis of magnetite/graphene oxide/chitosan composite and its application for protein adsorption[J]. Mat. Sci. Eng. C, 2014,45:8-14. doi: 10.1016/j.msec.2014.08.064

    12. [12]

      M.A. Salam, R.M. El-Shishtawy, A.Y. Obaid. Synthesis of magnetic multi-walled carbon nanotubes/magnetite/chitin magnetic nanocomposite for the removal of Rose bengal from real and model solution[J]. J. Ind. Eng. Chem., 2014,20:3559-3567. doi: 10.1016/j.jiec.2013.12.049

    13. [13]

      S. Qu, J. Wang, J.L. Kong, P.Y. Yang, G. Chen. Magnetic loading of carbon nanotube/nano-Fe (3) O (4) composite for electrochemical sensing[J]. Talanta, 2007,71:1096-1102. doi: 10.1016/j.talanta.2006.06.003

    14. [14]

      C. Luo, Z. Tian, B. Yang, L. Zhang, S.Q. Yan. Manganese dioxide/iron oxide/acid oxidized multi-walled carbon nanotube magnetic nanocomposite for enhanced hexavalent chromium removal[J]. Chem. Eng. J., 2013,234:256-265. doi: 10.1016/j.cej.2013.08.084

    15. [15]

      T. Hao, X.H. Rao, Z.J. Li. Synthesis of magnetic separable iron oxide/carbon nanocomposites for efficient adsorptive removal of Congo red[J]. J. Alloys Comp., 2014,617:76-80. doi: 10.1016/j.jallcom.2014.07.111

    16. [16]

      Q. Liu, J.Q. Tian, W. Cui. Carbon nanotubes decorated with CoP Nanocrystals:a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution[J]. Angew. Chem., 2014,126:6828-6832. doi: 10.1002/ange.201404161

    17. [17]

      C. Sengiz, G. Congur, E. Eksin, A. Erdem. Multiwalled Carbon Nanotubes-Chitosan Modified single-use biosensors for electrochemical monitoring of drug-DNA interactions[J]. Electroanalysis, 2015,27:1855-1863. doi: 10.1002/elan.v27.8

    18. [18]

      J. Ma, F. Yu, Z.H. Wen. A facile one-pot method for synthesis of low-cost iron oxide/activated carbon nanotube electrode materials for lithium-ion batteries[J]. Dalton Trans., 2013,42:1356-1359. doi: 10.1039/C2DT31887C

    19. [19]

      M.Y. Zhu, G.W. Diao. Review on the progress in synthesis and application of magnetic carbon nanocomposites[J]. Nanoscale, 2011,3:2748-2767. doi: 10.1039/c1nr10165j

    20. [20]

      Y. Cao. Preparation and magnetic properties of a multi-walled carbon nanotubeiron oxide nanoparticle composite[J]. Fuller. Nanotub. Carbon Nanostruct., 2014,23:623-626.

    21. [21]

      P. Clément, I. Hafaiedh, E.J. Parra. Iron oxide and oxygen plasma functionalized multi-walled carbon nanotubes for the discrimination of volatile organic compounds[J]. Carbon, 2014,78:510-520. doi: 10.1016/j.carbon.2014.07.032

    22. [22]

      Z.H. Wang, Z.D. Zhang, C.J. Choi, B.K. Kim. Structure and magnetic properties of Fe (C) and Co (C) nanocapsules prepared by chemical vapor condensation[J]. J. Alloys Comp., 2003,361:289-293. doi: 10.1016/S0925-8388(03)00441-9

    23. [23]

      J. Borysiuk, A. Grabias, J. Szczytko. Structure and magnetic properties of carbon encapsulated Fe nanoparticles obtained by arc plasma and combustion synthesis[J]. Carbon, 2008,46:1693-1701. doi: 10.1016/j.carbon.2008.07.011

    24. [24]

      J.B. Park, S.H. Jeong, M.S. Jeong, J.Y. Kim, B.K. Cho. Synthesis of carbon-encapsulated magnetic nanoparticles by pulsed laser irradiation of solution[J]. Carbon, 2008,46:1369-1377. doi: 10.1016/j.carbon.2008.05.011

    25. [25]

      W.X. Li, B.L. Lv, L.C. Wang, G.M. Li, Y. Xu. Fabrication of Fe3O4@C core-shell nanotubes and their application as a lightweight microwave absorbent[J]. RSC Adv., 2014,4:55738-55744. doi: 10.1039/C4RA10172C

    26. [26]

      F. Batmanghelich, M. Ghorbani. Effect of pH and carbon nanotube content on the corrosion behavior of electrophoretically deposited chitosan-hydroxyapatitecarbon nanotube composite coatings[J]. Ceram. Int., 2013,39:5393-5402. doi: 10.1016/j.ceramint.2012.12.046

    27. [27]

      J. Ma, J.N. Wang. Purification of single-walled carbon nanotubes by a highly efficient and nondestructive approach[J]. Chem. Mater., 2008,20:2895-2902. doi: 10.1021/cm8001699

    28. [28]

      F. Yu, J.H. Chen, L. Chen. Magnetic carbon nanotubes synthesis by Fenton's reagent method and their potential application for removal of azo dye from aqueous solution[J]. J. Colloid Interface. Sci., 2012,378:175-183. doi: 10.1016/j.jcis.2012.04.024

    29. [29]

      D.H. Guan, Z. Gao, W.L. Yang. Hydrothermal synthesis of carbon nanotube/cubic Fe3O4 nanocomposite for enhanced performance supercapacitor electrode material[J]. Mat. Sci. Eng. B, 2013,178:736-743. doi: 10.1016/j.mseb.2013.03.010

    30. [30]

      H. Sayahi, M.A. Kiani, S.H. Kazemi. Ultrasonic-assisted synthesis of magnetite/carbon nanocomposite for electrochemical supercapacitor[J]. J. Solid State Electrochem., 2014,18:535-543. doi: 10.1007/s10008-013-2289-7

    31. [31]

      Z.Y. Sun, Z.M. Liu, Y. Wang. Fabrication and characterization of magnetic carbon nanotube composites[J]. J. Mater. Chem., 2005,15:4497-4501. doi: 10.1039/b509968d

    32. [32]

      H. Setyawan, F. Fajaroh, W. Widiyastuti. One-step synthesis of silica-coated magnetite nanoparticles by electrooxidation of iron in sodium silicate solution[J]. J. Nanopart. Res., 2012,14807. doi: 10.1007/s11051-012-0807-7

    33. [33]

      K. Bubke, H. Gnewuch, M. Hempstead, J. Hammer, M.L.H. Green. Optical anisotropy of dispersed carbon nanotubes induced by an electric field[J]. Appl. Phys. Lett., 1997,71:1906-1908. doi: 10.1063/1.119976

    34. [34]

      J.Q. Wan, W. Cai, J.T. Feng, X.X. Meng, E.Z. Liu. In situ decoration of carbon nanotubes with nearly monodisperse magnetite nanoparticles in liquid polyols[J]. J. Mater. Chem., 2007,17:1188-1192.. doi: 10.1039/b615527h

    35. [35]

      H.T. Cui, Y. Liu, W.Z. Ren. Structure switch between α-Fe2O3, γ-Fe2O3 and Fe3O4 during the large scale and low temperature sol-gel synthesis of nearly monodispersed iron oxide nanoparticles[J]. Adv. Powder Technol., 2013,24:93-97. doi: 10.1016/j.apt.2012.03.001

    36. [36]

      D.N. Huang, X.Y. Wang, C.H. Deng. Facile preparation of raisin-bread sandwich-structured magnetic graphene/mesoporous silica composites with C18-modified pore-walls for efficient enrichment of phthalates in environmental water[J]. J. Chromatogr. A, 2014,1325:65-71. doi: 10.1016/j.chroma.2013.12.025

    37. [37]

      J.P. Jolivet, C. Chane ác, E. Tronc, Iron oxide chemistry. From molecular clusters to extended solid networks, Chem. Commun. (2004) 481-483.

    38. [38]

      W.J. Yu, L.L. Zhang, P.X. Hou, et al., High reversible lithium storage capacity and structural changes of Fe2O3 nanoparticles confined inside carbon nanotubes, Adv. Energy Mater. 6(2016), http://dx.doi.org/10.1002/aenm.201501755.

    39. [39]

      W.J. Sun, Z.Q. Liu, C.F. Jiang. Experimental and theoretical investigation on the interaction between palladium nanoparticles and functionalized carbon nanotubes for Heck synthesis[J]. Catal. Today, 2013,212:206-214. doi: 10.1016/j.cattod.2012.09.024

  • 加载中
    1. [1]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    2. [2]

      Xia SunZixian LiangJiahao ZhangBoxiang PengBing YuPei LiuBiao XiongJizhuang WangYin Ning . Controlling the extent of nanoparticle occlusion within calcite crystals via surface chemistry engineering. Chinese Chemical Letters, 2025, 36(9): 111205-. doi: 10.1016/j.cclet.2025.111205

    3. [3]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    4. [4]

      Yuwei LiuYihui ZhuWeijian DuanYizhuo YangHaorui TuoChunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347

    5. [5]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    6. [6]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    7. [7]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    8. [8]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    9. [9]

      Yongxin LIUXingchen LIHongjia LIUDanni LITao ZHANGXi CHEN . Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2503-2513. doi: 10.11862/CJIC.20250169

    10. [10]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    11. [11]

      Lin ZhangJianlong LiMaoyuan HuYao XuXiaoli XiongZhaoyu Jin . MOF-derived beaded stream-like nitrogen and phosphorus-codoped carbon-coated Fe3O4 nanocomposites via lattice-oxygen-mediated mechanism for efficient water oxidation. Chinese Chemical Letters, 2025, 36(8): 111123-. doi: 10.1016/j.cclet.2025.111123

    12. [12]

      Zhi-Peng ZhouXin WeiMing YanZhi-Guo WangRui HongJia-Zhuang Xu . Multifunctional selenium nanoparticles/gelatin-based nanocomposite hydrogel adhesive for accelerated full-thickness wound healing. Chinese Chemical Letters, 2025, 36(9): 111400-. doi: 10.1016/j.cclet.2025.111400

    13. [13]

      Siyu CaoYufei ShuLi WangQi HanMeng ZhangMengxia WangHow Yong NgZhongying Wang . Controlling nanomaterial distribution and aggregation in thin-film nanocomposite membranes: Role of substrate pore's relative size with nanomaterials. Chinese Chemical Letters, 2025, 36(10): 110793-. doi: 10.1016/j.cclet.2024.110793

    14. [14]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    15. [15]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    16. [16]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    17. [17]

      Zheng LiFangkun LiXijun XuJun ZengHangyu ZhangLei XiYiwen WuLinwei ZhaoJiahe ChenJun LiuYanping HuoShaomin Ji . A scalable approach to Na4Fe3(PO4)2P2O7@carbon/expanded graphite as cathode for ultralong-lifespan and low-temperature sodium-ion batteries. Chinese Chemical Letters, 2025, 36(10): 110390-. doi: 10.1016/j.cclet.2024.110390

    18. [18]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    19. [19]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    20. [20]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

Metrics
  • PDF Downloads(0)
  • Abstract views(1288)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return