Citation: Lei-Lei Rui, Hong-Liang Cao, Yu-Dong Xue, Li-Chao Liu, Lei Xu, Yun Gao, Wei-An Zhang. Functional organic nanoparticles for photodynamic therapy[J]. Chinese Chemical Letters, ;2016, 27(8): 1412-1420. doi: 10.1016/j.cclet.2016.07.011 shu

Functional organic nanoparticles for photodynamic therapy

Figures(7)

  • In recent years, cancer has been one of the leading causes of death in the world. Much effort has been devoted to developing cancer treatments. Photodynamic therapy (PDT) is a noninvasive therapeutic modality by combining the light of a specific wavelength, a photosensitizer (PS) and oxygen, which has been widely applied for the treatment of cancers. However, the application of PDT in clinic is greatly limited due to lack of tumor selectivity and often causing skin photosensitivity. The use of organic nanoparticles (NPs) as an advanced technology in the field of PDT shows a great promise to overcome these shortcomings. Therefore, in this review, we summarize several functional organic NPs as PS carriers that have been developed to enhance the efficacy of PDT against cancers.
  • 加载中
    1. [1]

      M. Ferrari. Cancer nanotechnology: opportunities and challenges[J]. Nat. Rev. Cancer, 2005,5:161-171. doi: 10.1038/nrc1566

    2. [2]

      T.J. Dougherty, G.B. Grindey, R. Fiel, K.R. Weishaupt, D.G. Boyle. photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light[J]. J. Natl. Cancer Inst., 1975,55:115-121.  

    3. [3]

      W.M. Sharman, C.M. Allen, J.E. van Lier. Role of activated oxygen species in photodynamic therapy, in: Methods in Enzymology[J]. Academic Press, New York, 2000,pp.:367-400.  

    4. [4]

      D.E.J.G.J. Dolmans, D. Fukumura, R.K. Jain. Photodynamic therapy for cancer[J]. Nat. Rev. Cancer, 2003,3:380-387. doi: 10.1038/nrc1071

    5. [5]

      P. Mroz, A. Yaroslavsky, G.B. Kharkwal, M.R. Hamblin. Cell death pathways in photodynamic therapy of cancer[J]. Cancers, 2011,3:2516-2539. doi: 10.3390/cancers3022516

    6. [6]

      P. Baluk, H. Hashizume, D.M. McDonald. Cellular abnormalities of blood vessels as targets in cancer[J]. Curr. Opin. Genet. Dev., 2005,15:102-111. doi: 10.1016/j.gde.2004.12.005

    7. [7]

      C. Abels. Targeting of the vascular system of solid tumours by photodynamic therapy (PDT)[J]. Photochem. Photobiol. Sci., 2004,3:765-771. doi: 10.1039/b314241h

    8. [8]

      R.R. Allison, K. Moghissi. Photodynamic therapy (PDT): PDT mechanisms[J]. Clin. Endosc., 2013,46:24-29. doi: 10.5946/ce.2013.46.1.24

    9. [9]

      M. Niedre, M.S. Patterson, B.C. Wilson. Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo[J]. Photochem. Photobiol., 2002,75:382-391. doi: 10.1562/0031-8655(2002)0750382DNILDO2.0.CO2

    10. [10]

      J. Moan, K. Berg. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen[J]. Photochem. Photobiol., 1991,53:549-553. doi: 10.1111/php.1991.53.issue-4

    11. [11]

      B. Green, A.R.M. Cobb, C. Hopper. Photodynamic therapy in the management of lesions of the head and neck[J]. Br. J. Oral Maxillofac. Surg., 2013,51:283-287. doi: 10.1016/j.bjoms.2012.11.011

    12. [12]

      R. Allison, K. Moghissi, G. Downie, K. Dixon. Photodynamic therapy (PDT) for lung cancer[J]. Photodiagnosis Photodyn. Ther., 2011,8:231-239. doi: 10.1016/j.pdpdt.2011.03.342

    13. [13]

      M.B. Ericson, A.M. Wennberg, O. Larkö. Review of photodynamic therapy in actinic keratosis and basal cell carcinoma[J]. Ther. Clin. Risk Manag., 2008,4:1-9.  

    14. [14]

      C.M.B. Carvalho, J.P.C. Tomé, M.A.F. Faustino. Antimicrobial photodynamic activity of porphyrin derivatives: potential application on medical and water disinfection[J]. J. Porphyrins Phthalocyanines, 2009,13:574-577. doi: 10.1142/S1088424609000528

    15. [15]

      S.S. Lucky, K.C. Soo, Y. Zhang. Nanoparticles in photodynamic therapy[J]. Chem. Rev., 2015,115:1990-2042. doi: 10.1021/cr5004198

    16. [16]

      K.K. Ng, G. Zheng. Molecular interactions in organic nanoparticles for phototheranostic applications[J]. Chem. Rev., 2015,115:11012-11042. doi: 10.1021/acs.chemrev.5b00140

    17. [17]

      W.M. Sharman, J.E. van Lier, C.M. Allen. Targeted photodynamic therapy via receptor mediated delivery systems[J]. Adv. Drug Deliv. Rev., 2004,56:53-76. doi: 10.1016/j.addr.2003.08.015

    18. [18]

      D. Kozlowska, P. Foran, P. MacMahon. Molecular and magnetic resonance imaging: the value of immunoliposomes[J]. Adv. Drug Deliv. Rev., 2009,61:1402-1411. doi: 10.1016/j.addr.2009.09.003

    19. [19]

      M. Ethirajan, Y.H. Chen, P. Joshi, R.K. Pandey. The role of porphyrin chemistry in tumor imaging and photodynamic therapy[J]. Chem. Soc. Rev., 2011,40:340-362. doi: 10.1039/B915149B

    20. [20]

      T.A. Debele, S. Peng, H.C. Tsai. Drug carrier for photodynamic cancer therapy[J]. Int. J. Mol. Sci., 2015,16:22094-22136. doi: 10.3390/ijms160922094

    21. [21]

      A.B. Ormond, H.S. Freeman. Dye sensitizers for photodynamic therapy[J]. Materials, 2013,6:817-840. doi: 10.3390/ma6030817

    22. [22]

      S.S. Stylli, A.H. Kaye, L. MacGregor, M. Howes, P. Rajendra. Photodynamic therapy of high grade glioma-long term survival[J]. J. Clin. Neurosci., 2005,12:389-398. doi: 10.1016/j.jocn.2005.01.006

    23. [23]

      C. Staneloudi, K.A. Smith, R. Hudson. Development and characterization of novel photosensitizer: scFv conjugates for use in photodynamic therapy ofcancer[J]. Immunology, 2007,120:512-517. doi: 10.1111/j.1365-2567.2006.02522.x

    24. [24]

      R.R. Allison. Photodynamic therapy: oncologic horizons[J]. Future Oncol., 2014,10:123-124. doi: 10.2217/fon.13.176

    25. [25]

      Z. Huang, H.P. Xu, A.D. Meyers. Photodynamic therapy for treatment of solid tumors-potential and technical challenges[J]. Technol. Cancer Res. Treat., 2008,7:309-320. doi: 10.1177/153303460800700405

    26. [26]

      A. Prokop, J.M. Davidson. Nanovehicular intracellular delivery systems[J]. J. Pharm. Sci., 2008,97:3518-3590. doi: 10.1002/jps.21270

    27. [27]

      C. Luo, J. Sun, B.J. Sun, Z.G. He. Prodrug-based nanoparticulate drug delivery strategies for cancer therapy[J]. Trends Pharm. Sci., 2014,35:556-566. doi: 10.1016/j.tips.2014.09.008

    28. [28]

      E. Paszko, C. Ehrhardt, M.O. Senge, D.P. Kelleher, J.V. Reynolds. Nanodrug applications in photodynamic therapy[J]. Photodiagn. Photodyn. Ther., 2011,8:14-29. doi: 10.1016/j.pdpdt.2010.12.001

    29. [29]

      Y.N. Konan, R. Gurny, E. Allémann. State of the art in the delivery of photosensitizers for photodynamic therapy[J]. J. Photochem. Photobiol. B: Biol., 2002,66:89-106. doi: 10.1016/S1011-1344(01)00267-6

    30. [30]

      R.R. Sawant, V.P. Torchilin. Liposomes as ‘smart’ pharmaceutical nanocarriers[J]. Soft Matter, 2010,6:4026-4044. doi: 10.1039/b923535n

    31. [31]

      J.F. Lovell, C.S. Jin, E. Huynh. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents[J]. Nat. Mater., 2011,10:324-332. doi: 10.1038/nmat2986

    32. [32]

      E. Huynh, G. Zheng. Porphysome nanotechnology: a paradigm shift in lipid-based supramolecular structures[J]. Nano Today, 2014,9:212-222. doi: 10.1016/j.nantod.2014.04.012

    33. [33]

      A.S.L. Derycke, P.A.M. de Witte. Liposomes for photodynamic therapy[J]. Adv. Drug Deliv. Rev., 2004,56:17-30. doi: 10.1016/j.addr.2003.07.014

    34. [34]

      D.D. Lasic, F.J. Martin, A. Gabizon, S.K. Huang, D. Papahadjopoulos. Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times[J]. Biochim. Biophys. Acta, 1991,1070:187-192. doi: 10.1016/0005-2736(91)90162-2

    35. [35]

      Y. Sadzuka, F. Iwasaki, I. Sugiyama. Phototoxicity of coproporphyrin as a novel photodynamic therapy was enhanced by liposomalization[J]. Toxicol. Lett., 2008,182:110-114. doi: 10.1016/j.toxlet.2008.09.002

    36. [36]

      R. Rahmanzadeh, P. Rai, J.P. Celli. Ki-67 as a molecular target for therapy in an in vitro three-dimensional model for ovarian cancer[J]. Cancer Res., 2010,70:9234-9242. doi: 10.1158/0008-5472.CAN-10-1190

    37. [37]

      N. Oku, T. Ishii. Chapter 16: Antiangiogenic photodynamic therapy with targeted liposomes, in: Methods in Enzymology[J]. Academic Press, New York, 2009,pp.:313-330.  

    38. [38]

      C.S. Jin, L.Y. Cui, F. Wang, J. Chen, G. Zheng. Targeting-triggered porphysome nanostructure disruption for activatable photodynamic therapy[J]. Adv. Healthc. Mater., 2014,3:1240-1249. doi: 10.1002/adhm.v3.8

    39. [39]

      C.S. Jin, G. Zheng. Liposomal nanostructures for photosensitizer delivery[J]. Lasers Surg. Med., 2011,43:734-748. doi: 10.1002/lsm.v43.7

    40. [40]

      P. Skupin-Mrugalska, J. Piskorz, T. Goslinski. Current status of liposomal porphyrinoid photosensitizers[J]. Drug Discov. Today, 2013,18:776-784. doi: 10.1016/j.drudis.2013.04.003

    41. [41]

      A. Yavlovich, B. Smith, K. Gupta, R. Blumenthal, A. Puri. Light-sensitive lipid-based nanoparticles for drug delivery: design principles and future considerations for biological applications[J]. Mol. Membr. Biol., 2010,27:364-381. doi: 10.3109/09687688.2010.507788

    42. [42]

      S. Simões, J.N. Moreira, C. Fonseca, N. Düzgüneş, M.C. Pedroso de Lima. On the formulation of pH-sensitive liposomes with long circulation times[J]. Adv. Drug Deliv. Rev., 2004,56:947-965. doi: 10.1016/j.addr.2003.10.038

    43. [43]

      B. Spring, Z.M. Mai, P. Rai, S. Chang, T. Hasan, Theranostic nanocells for simultaneous imaging and photodynamic therapy of pancreatic cancer, in: Proceedings of SPIE 7551, Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XIX, SPIE, San Francisco, CA, 2010, pp. 755104-755111.

    44. [44]

      X.L. Liang, X.D. Li, X.L. Yue, Z.F. Dai. Conjugation of porphyrin to nanohybrid cerasomes for photodynamic diagnosis and therapy of cancer[J]. Angew. Chem. Int. Ed., 2011,50:11622-11627. doi: 10.1002/anie.201103557

    45. [45]

      O. Salata. Applications of nanoparticles in biology and medicine[J]. J. Nanobiotechnol., 2004,23. doi: 10.1186/1477-3155-2-3

    46. [46]

      Y.M. Zhou, X.L. Liang, Z.F. Dai. Porphyrin-loaded nanoparticles for cancer theranostics[J]. Nanoscale, 2016,8:12394-12405. doi: 10.1039/C5NR07849K

    47. [47]

      S.Y. Wang, W.Z. Fan, G. Kim. Novel methods to incorporate photosensitizers into nanocarriers for cancer treatment by photodynamic therapy[J]. Lasers Surg. Med., 2011,43:686-695. doi: 10.1002/lsm.v43.7

    48. [48]

      A.O. Elzoghby, W.M. Samy, N.A. Elgindy. Albumin-based nanoparticles as potential controlled release drug delivery systems[J]. J. Control. Release, 2012,157:168-182. doi: 10.1016/j.jconrel.2011.07.031

    49. [49]

      K.Y. Choi, H. Chung, K.H. Min. Self-assembled hyaluronic acid nanoparticles for active tumor targeting[J]. Biomaterials, 2010,31:106-114. doi: 10.1016/j.biomaterials.2009.09.030

    50. [50]

      S.M. Abdelghany, D. Schmid, J. Deacon. Enhanced antitumor activity of the photosensitizer meso-tetra(N-methyl-4-pyridyl) porphine tetra tosylate through encapsulation in antibody-targeted chitosan/alginate nanoparticles[J]. Biomacromolecules, 2013,14:302-310. doi: 10.1021/bm301858a

    51. [51]

      J. Panyam, V. Labhasetwar. Biodegradable nanoparticles for drug and gene delivery to cells and tissue[J]. Adv. Drug Deliv. Rev., 2003,55:329-347. doi: 10.1016/S0169-409X(02)00228-4

    52. [52]

      D. Bechet, P. Couleaud, C. Frochot. Nanoparticles as vehicles for delivery of photodynamic therapy agents[J]. Trends Biotechnol., 2008,26:612-621. doi: 10.1016/j.tibtech.2008.07.007

    53. [53]

      D.K. Chatterjee, L.S. Fong, Y. Zhang. Nanoparticles in photodynamic therapy: an emerging paradigm[J]. Adv. Drug Deliv. Rev., 2008,60:1627-1637. doi: 10.1016/j.addr.2008.08.003

    54. [54]

      J.R. McCarthy, J.M. Perez, C. Brückner, R. Weissleder. Polymeric nanoparticle preparation that eradicates tumors[J]. Nano Lett., 2005,5:2552-2556. doi: 10.1021/nl0519229

    55. [55]

      A. Beletsi, Z. Panagi, K. Avgoustakis. Biodistribution properties of nanoparticles based on mixtures of PLGA with PLGA-PEG diblock copolymers[J]. Int. J. Pharm., 2005,298:233-241. doi: 10.1016/j.ijpharm.2005.03.024

    56. [56]

      C. Conte, F. Ungaro, G. Maglio. Biodegradable core-shell nanoassemblies for the delivery of docetaxel and Zn(II)-phthalocyanine inspired by combination therapy for cancer[J]. J. Control. Release, 2013,167:40-52. doi: 10.1016/j.jconrel.2012.12.026

    57. [57]

      S.Y. Wang, G. Kim, Y.E.K. Lee. Multifunctional biodegradable polyacrylamide nanocarriers for cancer theranostics-a "see and treat" strategy[J]. ACS Nano, 2012,6:6843-6851. doi: 10.1021/nn301633m

    58. [58]

      H. Wu, H.H. Wang, H. Liao. Multifunctional nanostructures for tumortargeted molecular imaging and photodynamic therapy[J]. Adv. Healthc. Mater., 2016,5:311-318. doi: 10.1002/adhm.v5.3

    59. [59]

      H. Gong, Z.L. Dong, Y.M. Liu. Engineering of multifunctional nano-micelles for combined photothermal and photodynamic therapy under the guidance of multimodal imaging[J]. Adv. Funct. Mater., 2014,24:6492-6502. doi: 10.1002/adfm.v24.41

    60. [60]

      O. Taratula, B.S. Doddapaneni, C. Schumann. Naphthalocyanine-based biodegradable polymeric nanoparticles for image-guided combinatorial phototherapy[J]. Chem. Mater., 2015,27:6155-6165. doi: 10.1021/acs.chemmater.5b03128

    61. [61]

      W.L. Kim, H. Cho, L. Li, H.C. Kang, K.M. Huh. Biarmed poly(ethylene glycol)-(pheophorbide a)2 conjugate as a bioactivatable delivery carrier for photodynamic therapy[J]. Biomacromolecules, 2014,15:2224-2234. doi: 10.1021/bm5003619

    62. [62]

      H.C. Chen, J.W. Tian, W.J. He, Z.J. Guo. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells[J]. J. Am. Chem. Soc., 2015,137:1539-1547. doi: 10.1021/ja511420n

    63. [63]

      D.S. Ling, W. Park, S.J. Park. Multifunctional tumor pH-sensitive selfassembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors[J]. J. Am. Chem. Soc., 2014,136:5647-5655. doi: 10.1021/ja4108287

    64. [64]

      T.T. Wang, D.G. Wang, H.J. Yu. Intracellularly acid-switchable multifunctional micelles for combinational photo/chemotherapy of the drug-resistant tumor[J]. ACS Nano, 2016,10:3496-3508. doi: 10.1021/acsnano.5b07706

    65. [65]

      S.I. Shoda, H. Uyama, J.I. Kadokawa, S. Kimura, S. Kobayashi. Enzymes as green catalystsforprecisionmacromolecularsynthesis[J]. Chem.Rev., 2016,116:2307-2413. doi: 10.1021/acs.chemrev.5b00472

    66. [66]

      Y. Choi, R. Weissleder, C.H. Tung. Selective antitumor effect of novel proteasemediated photodynamic agent[J]. Cancer Res., 2006,66:7225-7229. doi: 10.1158/0008-5472.CAN-06-0448

    67. [67]

      K. Han, S.B. Wang, Q. Lei, J.Y. Zhu, X.Z. Zhang. Ratiometric biosensor for aggregation-induced emission-guided precise photodynamic therapy[J]. ACS Nano, 2015,9:10268-10277. doi: 10.1021/acsnano.5b04243

    68. [68]

      S.Y. Li, H. Cheng, W.X. Qiu. Protease-activable cell-penetrating peptideprotoporphyrin conjugate for targeted photodynamic therapy in vivo[J]. ACS Appl. Mater. Interfaces, 2015,7:28319-28329. doi: 10.1021/acsami.5b08637

    69. [69]

      Y.Y. Yuan, C.J. Zhang, B. Liu. A photoactivatable AIE polymer for light-controlled gene delivery: concurrent endo/lysosomal escape and DNA unpacking[J]. Angew. Chem. Int. Ed., 2015,54:11419-11423. doi: 10.1002/anie.201503640

    70. [70]

      H.B. Chen, L. Xiao, Y. Anraku. Polyion complex vesicles for photoinduced intracellular delivery of amphiphilic photosensitizer[J]. J. Am. Chem. Soc., 2014,136:157-163. doi: 10.1021/ja406992w

    71. [71]

      A.M. Bugaj. Targeted photodynamic therapy- a promising strategy of tumor treatment[J]. Photochem. Photobiol. Sci., 2011,10:1097-1109. doi: 10.1039/c0pp00147c

    72. [72]

      L.S. Nair, C.T. Laurencin. Biodegradable polymers as biomaterials[J]. Prog. Polym. Sci., 2007,32:762-798. doi: 10.1016/j.progpolymsci.2007.05.017

    73. [73]

      W.J. Gradishar. Albumin-bound paclitaxel: a next-generation taxane[J]. Expert Opin. Pharmacother., 2006,7:1041-1053. doi: 10.1517/14656566.7.8.1041

    74. [74]

      M. Wacker, K. Chen, A. Preuss. Photosensitizer loaded HSA nanoparticles. I: Preparation and photophysical properties[J]. Int. J. Pharm., 2010,393:254-263. doi: 10.1016/j.ijpharm.2010.04.022

    75. [75]

      Z.H. Sheng, D.H. Hu, M.B. Zheng. Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy[J]. ACS Nano, 2014,8:12310-12322. doi: 10.1021/nn5062386

    76. [76]

      Q. Chen, X.D. Liu, J.W. Chen. A self-assembled albumin-based nanoprobe for in vivo ratiometric photoacoustic pH imaging[J]. Adv. Mater., 2015,27:6820-6827. doi: 10.1002/adma.201503194

    77. [77]

      T.C. Laurent, J.R. Fraser. Hyaluronan[J]. FASEB J., 1992,6:2397-2404.

    78. [78]

      J. Necas, L. Bartosikova, P. Brauner, J. Kolar. Hyaluronic acid (hyaluronan): a review[J]. Vet. Med., 2008,53:397-411.  

    79. [79]

      H.Y. Yoon, H. Koo, K.Y. Choi. Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy[J]. Biomaterials, 2012,33:3980-3989. doi: 10.1016/j.biomaterials.2012.02.016

    80. [80]

      J. Han, W. Park, S.J. Park, K. Na. Photosensitizer-conjugated hyaluronic acidshielded polydopamine nanoparticles for targeted photomediated tumor therapy[J]. ACS Appl. Mater. Interfaces, 2016,8:7739-7747. doi: 10.1021/acsami.6b01664

    81. [81]

      R. Hejazi, M. Amiji. Chitosan-based gastrointestinal delivery systems[J]. J. Control. Release, 2003,89:151-165. doi: 10.1016/S0168-3659(03)00126-3

    82. [82]

      J.H. Kim, Y.S. Kim, K. Park. Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy[J]. Biomaterials, 2008,29:1920-1930. doi: 10.1016/j.biomaterials.2007.12.038

    83. [83]

      I.H. Oh, H.S. Min, L. Li. Cancer cell-specific photoactivity of pheophorbide aglycol chitosan nanoparticles for photodynamic therapy in tumor-bearing mice[J]. Biomaterials, 2013,34:6454-6463. doi: 10.1016/j.biomaterials.2013.05.017

    84. [84]

      Z.X. Liao, Y.C. Li, H.M. Lu, H.W. Sung. A genetically-encoded KillerRed protein as an intrinsically generated photosensitizer for photodynamic therapy[J]. Biomaterials, 2014,35:500-508. doi: 10.1016/j.biomaterials.2013.09.075

  • 加载中
    1. [1]

      Liangliang JiaYe HongXinyu HeYing ZhouLiujiao RenHongjun DuBin ZhaoBin QinZhe YangDi Gao . Fighting hypoxia to improve photodynamic therapy-driven immunotherapy: Alleviating, exploiting and disregarding. Chinese Chemical Letters, 2025, 36(2): 109957-. doi: 10.1016/j.cclet.2024.109957

    2. [2]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    3. [3]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    4. [4]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    5. [5]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    6. [6]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    7. [7]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    8. [8]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    9. [9]

      Yan ZhuJia LiuMeiheng LvTingting WangDongxiang ZhangRong ShangXin-Dong JiangJianjun DuGuiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446

    10. [10]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    11. [11]

      Chi ZhangNing DingYuwei PanLichun FuYing Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579

    12. [12]

      Di AnMingdong SheZiyang ZhangTing ZhangMiaomiao XuJinjun ShaoQian ShenXuna Tang . Light-responsive nanomaterials for biofilm removal in root canal treatment. Chinese Chemical Letters, 2025, 36(2): 109841-. doi: 10.1016/j.cclet.2024.109841

    13. [13]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    14. [14]

      Yu QinMingyang HuangChenlu HuangHannah L. PerryLinhua ZhangDunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171

    15. [15]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    16. [16]

      Wenkai LiuYanxian HouWeijian LiuRan WangShan HeXiang XiaChengyuan LvHua GuQichao YaoQingze PanZehou SuDanhong ZhouWen SunJiangli FanXiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631

    17. [17]

      Du LiuYuyan LiHankun ZhangBenhua WangChaoyi YaoMinhuan LanZhanhong YangXiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910

    18. [18]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    19. [19]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    20. [20]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

Metrics
  • PDF Downloads(3)
  • Abstract views(3894)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return