Citation: Lei Yang, Da-Cheng Wei. Semiconducting covalent organic frameworks: a type of two-dimensional conducting polymers[J]. Chinese Chemical Letters, ;2016, 27(8): 1395-1404. doi: 10.1016/j.cclet.2016.07.010 shu

Semiconducting covalent organic frameworks: a type of two-dimensional conducting polymers

  • Corresponding author: Da-Cheng Wei, weidc@fudan.edu.cn
  • Received Date: 29 April 2016
    Revised Date: 28 June 2016
    Accepted Date: 6 July 2016
    Available Online: 18 August 2016

Figures(14)

  • In recent years, as a new class of two-dimensional polymer, covalent organic frameworks (COFs) have attracted intensive attention and developed rapidly. This review provides an overview of a type of COFs which can be utilized as organic semiconductors. Carefully choosing monomers as the building blocks will bestow different types of semiconducting character on COFs. We summarize the p-type, n-type and ambipolar semiconducting COFs and highlight the effects of π-functional building blocks on the photoconductive behaviors of the semiconducting COFs.
  • 加载中
    1. [1]

      A.P. Côté, A.I. Benin, N.W. Ockwig. Porous, crystalline, covalent organic frameworks[J]. Science, 2005,310:1166-1170. doi: 10.1126/science.1120411

    2. [2]

      (a) H. Furukawa, O.M. Yaghi, Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications, J. Am. Chem. Soc. 131(2009) 8875-8883; (b) C.J. Doonan, D.J. Tranchemontagne, T.G. Glover, J.R. Hunt, O.M. Yaghi, Exceptional ammonia uptake by a covalent organic framework, Nat. Chem. 2(2010) 235-238. 

    3. [3]

      (a) N. Huang, X. Chen, R. Krishna, D.L. Jiang, Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization, Angew. Chem. Int. Ed. 54(2015) 2986-2990; (b) M.M. Tong, Q.Y. Yang, Q.T. Ma, D.H. Liu, C.L. Zhong, Few-layered ultrathin covalent organic framework membranes for gas separation: a computational study, J. Mater. Chem. A 4(2016) 124-131. 

    4. [4]

      (a) S.Y. Ding, J. Gao, Q. Wang, et al., Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction, J. Am. Chem. Soc. 133(2011) 19816-19822; (b) S. Lin, C.S. Diercks, Y.B. Zhang, et al., Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water, Science 349(2015) 1208-1213; (c) Y. Wu, H. Xu, X. Chen, J. Gao, D.L. Jiang, A (-electronic covalent organic framework catalyst: (-walls as catalytic beds for Diels-Alder reactions under ambient conditions, Chem. Commun. 51(2015) 10096-10098. 

    5. [5]

      (a) X. Chen, M. Addicoat, S. Irle, A. Nagai, D.L. Jiang, Control of crystallinity and porosity of covalent organic frameworks by managing interlayer interactions based on self-complementary π-electronic force, J. Am. Chem. Soc. 135(2013) 546-549; (b) S. Chandra, T. Kundu, K. Dey, et al., Interplaying intrinsic and extrinsic proton conductivities in covalent organic frameworks, Chem. Mater. 28(2016) 1489-1494; (c) H. Xu, S.S. Tao, D.L. Jiang, Proton conduction in crystalline and porous covalent organic frameworks, Nat. Mater. 15(2016) 722-726. 

    6. [6]

      (a) G.Q. Lin, H.M. Ding, D.Q. Yuan, B.S. Wang, C. Wang, A pyrene-based, fluorescent three-dimensional covalent organic framework, J. Am. Chem. Soc. 138(2016) 3302-3305; (b) H. Chen, X. Xu, H. Gang, et al., Novel fluorene-carzazole-based conjugated copolymers containing pyrazoline and benzothiazole segments for blue lightemitting materials, Chin. Chem. Lett. 18(2007) 1496-1500;(c) Z. Wang, W. Zhang, F. Tao, et al., Synthesis and properties of two novel copolymers based on squaraine and fluorene units for solar cell materials, Chin. Chem. Lett. 22(2011) 1001-1004; (d) X.R. Cai, H. Chen, T. Zhang, et al., Synthesis and characterization of a novel main chain oxadiazole-based copolymer for n-type solar cell material, Chin. Chem. Lett. 18(2007) 1342-1346. 

    7. [7]

      M.Dogru , T. Bein. On the road towards electroactive covalent organic frameworks[J]. Chem. Commun., 2014,50:5531-5546. doi: 10.1039/C3CC46767H

    8. [8]

      P.J. Waller, F. Gándara, O.M. Yaghi. Chemistry of covalent organic frameworks[J]. Acc. Chem. Res., 2015,48:3053-3063. doi: 10.1021/acs.accounts.5b00369

    9. [9]

      (a) H.M. El-Kaderi, J.R. Hunt, J.L. Mendoza-Cortés, et al., Designed synthesis of 3D covalent organic frameworks, Science 316(2007) 268-272; (b) J.R. Hunt, C.J. Doonan, J.D. LeVangie, A.P. Côté, O.M. Yaghi, Reticular synthesis of covalent organic borosilicate frameworks, J. Am. Chem. Soc. 130(2008) 11872-11873. 

    10. [10]

      (a) F.J. Uribe-Romo, J.R. Hunt, H. Furukawa, et al., A crystalline imine-linked 3-D porous covalent organic framework, J. Am. Chem. Soc. 131(2009) 4570-4571; (b) F.J. Uribe-Romo, C.J. Doonan, H. Furukawa, K. Oisaki, O.M. Yaghi, Crystalline covalent organic frameworks with hydrazone linkages, J. Am. Chem. Soc. 133(2011) 11478-11481; (c) A. Nagai, X. Chen, X. Feng, et al., A squaraine-linked mesoporous covalent organic framework, Angew. Chem. Int. Ed. 52(2013) 3770-3774. 

    11. [11]

      (a) P. Kuhn, M. Antonietti, A. Thomas, Porous, covalent triazine-based frameworks prepared by ionothermal synthesis, Angew, Chem. Int. Ed. 47(2008) 3450-3453; (b) Q.R. Fang, Z.B. Zhuang, S. Gu, et al., Designed synthesis of large-pore crystalline polyimide covalent organic frameworks, Nat. Commun. 5(2014) 4503.

    12. [12]

      K.T. Jackson, T.E. Reich, H.M. El-Kaderi. Targeted synthesis of a porous borazinelinked covalent organic framework[J]. Chem. Commun., 2012,48:8823-8825. doi: 10.1039/c2cc33583b

    13. [13]

      D. Beaudoin, T. Maris, J.D. Wuest. Constructing monocrystalline covalent organic networks by polymerization[J]. Nat. Chem., 2013,5:830-834. doi: 10.1038/nchem.1730

    14. [14]

      S. Wan, F. Gándara, A. Asano. Covalent organic frameworks with high charge carrier mobility[J]. Chem. Mater., 2011,23:4094-4097. doi: 10.1021/cm201140r

    15. [15]

      S. Wan, J. Guo, J. Kim, H. Ihee, D.L. Jiang, A belt-shaped, blue luminescent, and semiconducting covalent organic framework. Angew[J]. Chem. Int. Ed., 2008,47:8826-8830. doi: 10.1002/anie.v47:46

    16. [16]

      S. Wan, J. Guo, J. Kim, H. Ihee, D.L. Jiang. A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation[J]. Angew. Chem. Int. Ed., 2009,48:5439-5442. doi: 10.1002/anie.v48:30

    17. [17]

      (a) H.P. Liao, H.M. Wang, H.M. Ding, et al., A 2D porous porphyrin-based covalent organic framework for sulfur storage in lithium-sulfur batteries, J. Mater. Chem. A 4(2016) 7416-7421; (b) H.M. Wang, H.M. Ding, X.S. Meng, C. Wang, Two-dimensional porphyrin- and phthalocyanine-based covalent organic frameworks, Chin. Chem. Lett. 27(2016) 1376-1382. 

    18. [18]

      X.S. Ding, J. Guo, X. Feng. Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity[J]. Angew. Chem. Int. Ed., 2011,50:1289-1293. doi: 10.1002/anie.v50.6

    19. [19]

      X.S. Ding, X. Feng, A. Saeki. Conducting metallophthalocyanine 2D covalent organic frameworks: the role of central metals in controlling p-electronic functions[J]. Chem. Commun., 2012,48:8952-8954. doi: 10.1039/c2cc33929c

    20. [20]

      S.B. Jin, T. Sakurai, T. Kowalczyk. Two-dimensional tetrathiafulvalene covalent organic frameworks: towards latticed conductive organic salts[J]. Chem. Eur. J., 2014,20:14608-14613. doi: 10.1002/chem.v20.45

    21. [21]

      (a) H.M. Ding, Y.H. Li, H. Hu, et al., A tetrathiafulvalene-based electroactive covalent organic framework, Chem. Eur. J. 20(2014) 14614-14618; (b) S.L. Cai, Y.B. Zhang, A.B. Pun, et al., Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework, Chem. Sci. 5(2014) 4693-4700. 

    22. [22]

      J. Guo, Y.H. Xu, S.B. Jin. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds[J]. Nat. Commun., 2013,42736.  

    23. [23]

      M. Dogru, M. Handloser, F. Auras. A photoconductive thienothiophenebased covalent organic framework showing charge transfer towards included fullerene[J]. Angew. Chem. Int. Ed., 2013,52:2920-2924. doi: 10.1002/anie.201208514

    24. [24]

      L. Chen, K. Furukawa, J. Gao. Photoelectric covalent organic frameworks: converting open lattices into ordered donor-acceptor heterojunctions[J]. J. Am. Chem. Soc., 2014,136:9806-9809. doi: 10.1021/ja502692w

    25. [25]

      X. Feng, L. Chen, Y. Honsho. An ambipolar conducting covalent organic framework with self-sorted and periodic electron donor-acceptor ordering[J]. Adv. Mater., 2012,24:3026-3031. doi: 10.1002/adma.v24.22

    26. [26]

      M. Calik, F. Auras, L.M. Salonen. Extraction of photogenerated electrons and holes from a covalent organic framework integrated heterojunction[J]. J. Am. Chem. Soc., 2014,136:17802-17807. doi: 10.1021/ja509551m

    27. [27]

      S.B. Jin, K. Furukawa, M. Addicoat. Large pore donor-acceptor covalent organic frameworks[J]. Chem. Sci., 2013,4:4505-4511. doi: 10.1039/c3sc52034j

    28. [28]

      (a) S.B. Jin, M. Supur, M. Addicoat, et al., Creation of superheterojunction polymers viadirect polycondensation: segregated andbicontinuousdonor-acceptor (-columnar arrays in covalent organic frameworks for long-lived charge separation, J. Am. Chem. Soc. 137(2015) 7817-7827; (b) S.B. Jin, X.S. Ding, X. Feng, et al., Charge dynamics in a donor-acceptor covalent organic framework with periodically ordered bicontinuous heterojunctions, Angew. Chem. Int. Ed. 52(2013) 2017-2021. 

    29. [29]

      X.S. Ding, L. Chen, Y. Honsho. An n-channel two-dimensional covalent organic framework[J]. J. Am. Chem. Soc., 2011,133:14510-14513. doi: 10.1021/ja2052396

    30. [30]

      X. Feng, L.L. Liu, Y. Honsho. High-rate charge-carrier transport in porphyrin covalent organic frameworks: switching from hole to electron to ambipolar conduction[J]. Angew. Chem. Int. Ed., 2012,51:2618-2622. doi: 10.1002/anie.201106203

    31. [31]

      X.K. Gao, Y.B. Hu. Development of n-type organic semiconductors for thin film transistors: a viewpoint of molecular design[J]. J. Mater. Chem. C, 2014,2:3099-3117. doi: 10.1039/c3tc32046d

    32. [32]

      (a) J.W. Colson, A.R. Woll, A. Mukherjee, et al., Oriented 2D covalent organic framework thin films on single-layer graphene, Science 332(2011) 228-231; (b) X.H. Liu, C.Z. Guan, S.Y. Ding, et al., On-surface synthesis of singlelayered two-dimensional covalent organic frameworks via solid-vapor interface reactions, J. Am. Chem. Soc. 135(2013) 10470-10474; (c) C.Z. Guan, D. Wang, L.J. Wan, Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation, Chem. Commun. 48(2012) 2943-2945; (d) J.I. Feldblyum, C.H. McCreery, S.C. Andrews, et al., Few-layer, large-area, 2D covalent organic framework semiconductor thin films, Chem. Commun. 51(2015) 13894-13897; (e) L.R. Xu, X. Zhou, Y.X. Yu, et al., Surface-confined crystalline two-dimensional covalent organic frameworks via on-surface schiff-base coupling, ACS Nano. 7(2013) 8066-8073. 

    33. [33]

      (a) N.L. Campbell, R. Clowes, L.K. Ritchie, A.I. Cooper, Rapid microwave synthesis and purification of porous covalent organic frameworks, Chem. Mater. 21(2009) 204-206; (b) B.P. Biswal, S. Chandra, S. Kandambeth, et al., Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks, J. Am. Chem. Soc. 135(2013) 5328-5331. 

  • 加载中
    1. [1]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    2. [2]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    3. [3]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    4. [4]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    5. [5]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    6. [6]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    7. [7]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    8. [8]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    9. [9]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    10. [10]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    11. [11]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    12. [12]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    13. [13]

      Junhua WangXin LianXichuan CaoQiao ZhaoBaiyan LiXian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180

    14. [14]

      Jiahao LiGuinan ChenChunhong ChenYuanyuan LouZhihao XingTao ZhangChengtao GongYongwu Peng . Modulated synthesis of stoichiometric and sub-stoichiometric two-dimensional covalent organic frameworks for enhanced ethylene purification. Chinese Chemical Letters, 2025, 36(1): 109760-. doi: 10.1016/j.cclet.2024.109760

    15. [15]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    16. [16]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    17. [17]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    18. [18]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    19. [19]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    20. [20]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

Metrics
  • PDF Downloads(6)
  • Abstract views(748)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return