Citation: Ya-Kun Wang, Zuo-Quan Jiang, Liang-Sheng Liao. New advances in small molecule hole-transporting materials for perovskite solar cells[J]. Chinese Chemical Letters, ;2016, 27(8): 1293-1303. doi: 10.1016/j.cclet.2016.07.004 shu

New advances in small molecule hole-transporting materials for perovskite solar cells


  • Author Bio:
    Zuo-Quan Jiang is an Associate Professor at Soochow University. He obtained his PhD degree from Wuhan University in 2009 followed by working as a postdoctoral fellow at University of Washington and Hong Kong City University. Then, he joined Institute of Functional Nano & Soft Materials (FUNSOM) of Soochow University in 2011 and took collaborative study in Georgia Tech as a visiting scholar in 2015. His current research interests focus on the design and synthesis of conjugated molecules & polymers and their applications in optoelectronics

  • Corresponding author: Zuo-Quan Jiang, zqjiang@suda.edu.cn
  • Received Date: 21 April 2016
    Revised Date: 13 June 2016
    Accepted Date: 28 June 2016
    Available Online: 27 August 2016

Figures(8)

  • Organic π-functional molecules are the foundation and basic component of organic optoelectronic devices. For example, for ideal carrier transporting materials, extended π-conjugation and ordered π-π stacking are necessary to enhance the charge mobility and achieve desirable results. As a promising way to convert sunlight into electricity, organometal halide perovskite solar cells (PSCs) have captured a lot of attention due to its predominant merits especially in the aspect of remarkable photovoltaic performance and much potentially low production cost. For conventional planar PSC structure, hole-transporting layer which typically consists of organic π-functional materials plays a key role in suppressing hole-electron pair recombination, promoting charge transporting and ensuring ohmic contact of back electrode. Considering the key roles of HTMs and its soaring progress in recent years, here, we will summarize recent progress in small organic π-functional materials from its diverse functions in PSCs. Besides, aiming to further promote the development of organic π-functional molecules and HTMs, a promising direction toward highly efficient HTMs will also be discussed.
  • 加载中
    1. [1]

      L. Etgar, P. Gao, Z. Xue. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells[J]. J. Am. Chem. Soc., 2012,134:17396-17399. doi: 10.1021/ja307789s

    2. [2]

      M.Z. Liu, M.B. Johnston, H.J. Snaith. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013,501:395-398. doi: 10.1038/nature12509

    3. [3]

      P. Gao, M. Grätzel, M.K. Nazeeruddin. Organohalide lead perovskites for photovoltaic applications[J]. Energy Environ. Sci., 2014,7:2448-2463. doi: 10.1039/C4EE00942H

    4. [4]

      M.A. Green, A. Ho-Baillie, H.J. Snaith. The emergence of perovskite solar cells[J]. Nat. Photonics, 2014,8:506-514. doi: 10.1038/nphoton.2014.134

    5. [5]

      P. Qin, S. Paek, M.I. Dar. Perovskite solar cells with 12.8% efficiency by using conjugated quinolizino acridine based hole transporting material[J]. J. Am. Chem. Soc., 2014,136:8516-8519. doi: 10.1021/ja503272q

    6. [6]

      M. Grätzel. The light and shade of perovskite solar cells[J]. Nat. Mater., 2014,13:838-842. doi: 10.1038/nmat4065

    7. [7]

      H.S. Kim, C.R. Lee, J.H. Im. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci. Rep., 2012,2591.  

    8. [8]

      M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012,338:643-647. doi: 10.1126/science.1228604

    9. [9]

      G.E. Eperon, S.D. Stranks, C. Menelaou. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy Environ. Sci., 2014,7:982-988. doi: 10.1039/c3ee43822h

    10. [10]

      J.W. Lee, D.J. Seol, A.N. Cho, N.G. Park. High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3[J]. Adv. Mater., 2014,26:4991-4998. doi: 10.1002/adma.201401137

    11. [11]

      F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis. Lead-free solidstate organic-inorganic halide perovskite solar cells[J]. Nat. Photonics, 2014,8:489-494. doi: 10.1038/nphoton.2014.82

    12. [12]

      F. Hao, C.C. Stoumpos, R.P.H. Chang, M.G. Kanatzidis. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells[J]. J. Am. Chem. Soc., 2014,136:8094-8099. doi: 10.1021/ja5033259

    13. [13]

      N.K. Noel, S.D. Stranks, A. Abate. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications[J]. Energy Environ. Sci., 2014,7:3061-3068. doi: 10.1039/C4EE01076K

    14. [14]

      J.H. Heo, D.H. Song, S.H. Im. Planar CH3NH3PbBr3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spincoating process[J]. Adv. Mater., 2014,26:8179-8183. doi: 10.1002/adma.201403140

    15. [15]

      J. Burschka, N. Pellet, S.J. Moon. Sequential deposition as a route to highperformance perovskite-sensitized solar cells[J]. Nature, 2013,499:316-319. doi: 10.1038/nature12340

    16. [16]

      W. Nie, H. Tsai, R. Asadpour. Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains[J]. Science, 2015,347:522-525. doi: 10.1126/science.aaa0472

    17. [17]

      H.P. Zhou, Q. Chen, G. Li. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014,345:542-546. doi: 10.1126/science.1254050

    18. [18]

      G. Hodes. Perovskite-based solar cells[J]. Science, 2013,342:317-318. doi: 10.1126/science.1245473

    19. [19]

      P. Qin, S. Tanaka, S. Ito. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency[J]. Nat. Commun., 2014,53834.  

    20. [20]

      Y. Wang, S. Bai, L. Cheng. High-efficiency flexible solar cells based on organometal halide perovskites[J]. Adv. Mater., 2016,28:4532-4540. doi: 10.1002/adma.v28.22

    21. [21]

      A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009,131:6050-6051. doi: 10.1021/ja809598r

    22. [22]

      J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park. 6.5% efficient perovskite quantumdot-sensitized solar cell[J]. Nanoscale, 2011,3:4088-4093. doi: 10.1039/c1nr10867k

    23. [23]

      Y.K. Song, S.T. Lv, X.C. Liu. Energy level tuning of TPB-based hole-transporting materials for highly efficient perovskite solar cells[J]. Chem. Commun., 2014,50:15239-15242. doi: 10.1039/C4CC06493C

    24. [24]

      J.W. Jung, C.C. Chueh, A.K.Y. Jen. High-performance semitransparent perovskite solar cells with 10% power conversion efficiency and 25% average visible transmittance based on transparent CuSCN as the hole-transporting material[J]. Adv. Energy Mater., 2015,51500486. doi: 10.1002/aenm.201500486

    25. [25]

      G.A. Sepalage, S. Meyer, A. Pascoe. Copper (Ⅰ) iodide as hole-conductor in planar perovskite solar cells: probing the origin of J-V hysteresis[J]. Adv. Funct. Mater., 2015,25:5650-5651. doi: 10.1002/adfm.201502541

    26. [26]

      H.R. Li, K.W. Fu, A. Hagfeldt. A Simple 3, 4-ethylenedioxythiophene based hole-transporting material for perovskite solar cells[J]. Angew. Chem. Int. Ed, 2014,53:4085-4088. doi: 10.1002/anie.201310877

    27. [27]

      Y.K. Wang, Z.C. Yuan, G.Z. Shi. Dopant-free spiro-triphenylamine/fluorene as hole-transporting material for perovskite solar cells with enhanced efficiency and stability[J]. Adv. Funct. Mater., 2016,26:1375-1381. doi: 10.1002/adfm.v26.9

    28. [28]

      K.G. Lim, H.B. Kim, J. Jeong. Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function[J]. Adv. Mater., 2014,26:6461-6466. doi: 10.1002/adma.201401775

    29. [29]

      C.C. Chueh, C.Z. Li, A.K.Y. Jen. Recent progress and perspective in solutionprocessed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells[J]. Energy Environ. Sci., 2015,8:1160-1189. doi: 10.1039/C4EE03824J

    30. [30]

      Z.J. Ning, Y. Fu, H. Tian. Improvement of dye-sensitized solar cells: what we know and what we need to know[J]. Energy Environ. Sci., 2010,3:1170-1181. doi: 10.1039/c003841e

    31. [31]

      N.J. Jeon, J. Lee, J.H. Noh. Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials[J]. J. Am. Chem. Soc., 2013,135:19087-19090. doi: 10.1021/ja410659k

    32. [32]

      M.K. Wang, J.Y. Liu, N.L. Cevey-Ha. High efficiency solid-state sensitized heterojunction photovoltaic device[J]. Nano Today, 2010,5:169-174. doi: 10.1016/j.nantod.2010.04.001

    33. [33]

      B. Cai, Y.D. Xing, Z. Yang, W.H. Zhang, J.S. Qiu. High performance hybrid solar cells sensitized by organolead halide perovskites[J]. Energy Environ. Sci., 2013,6:1480-1485. doi: 10.1039/c3ee40343b

    34. [34]

      J.J. Wang, S.R. Wang, X.G. Li. Novel hole transporting materials with a linear π-conjugated structure for highly efficient perovskite solar cells[J]. Chem. Commun., 2014,50:5829-5832. doi: 10.1039/c4cc01637h

    35. [35]

      S. Park, J.H. Heo, C.H. Cheon. A[2, 2] paracyclophane triarylamine-based hole-transporting material for high performance perovskite solar cells[J]. J. Mater. Chem. A, 2015,3:24215-24220. doi: 10.1039/C5TA08417B

    36. [36]

      M. Cheng, B. Xu, C. Chen. Phenoxazine-based small molecule material for efficient perovskite solar cells and bulk heterojunction organic solar cells[J]. Adv. Energy Mater., 2015,51401720. doi: 10.1002/aenm.201401720

    37. [37]

      J. Liu, Y.Z. Wu, C.J. Qin. A dopant-free hole-transporting material for efficient and stable perovskite solar cells[J]. Energy Environ. Sci, 2014,7:2963-2967. doi: 10.1039/C4EE01589D

    38. [38]

      M. Franckevičius, A. Mishra, F. Kreuzer. A dopant-free spirobi[cyclopenta[2, 1-b: 3, 4-b'] dithiophene] based hole-transport material for efficient perovskite solar cells[J]. Mater. Horiz, 2015,2:613-618. doi: 10.1039/C5MH00154D

    39. [39]

      N.J. Jeon, H.G. Lee, Y.C. Kim. o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells[J]. J. Am. Chem. So, 2014,136:7837-7840. doi: 10.1021/ja502824c

    40. [40]

      P. Ganesan, K.W. Fu, P. Gao. A simple spiro-type hole transporting material for efficient perovskite solar cells[J]. Energy Environ. Sci, 2015,8:1986-1991. doi: 10.1039/C4EE03773A

    41. [41]

      S.Y. Ma, H. Zhang, N. Zhao. Spiro-thiophene derivatives as hole-transport materials for perovskite solar cells[J]. J. Mater. Chem. A, 2015,3:12139-12144. doi: 10.1039/C5TA01155H

    42. [42]

      M.H. Li, C.W. Hsu, P.S. Shen. Novel spiro-based hole transporting materials for efficient perovskite solar cells[J]. Chem. Commun., 2015,51:15518-15521. doi: 10.1039/C5CC04405G

    43. [43]

      S.S. Reddy, K. Gunasekar, J.H. Heo. Highly efficient organic hole transporting materials for perovskite and organic solar cells with long-term stability[J]. Adv. Mater., 2016,28:686-693. doi: 10.1002/adma.201503729

    44. [44]

      H. Choi, J.W. Cho, M.S. Kang, J. Ko. Stable and efficient hole transporting materials with a dimethylfluorenylamino moiety for perovskite solar cells[J]. Chem. Commun., 2015,51:9305-9308. doi: 10.1039/C5CC01471A

    45. [45]

      H. Choi, K. Do, S. Park, J.S. Yu, J. Ko. Efficient hole transporting materials with two or four N, N-Di(4-methoxyphenyl)aminophenyl arms on an ethene unit for perovskite solar cells[J]. Chem. Eur. J., 2015,21:15919-15923. doi: 10.1002/chem.201502741

    46. [46]

      M.S. Kang, S.D. Sung, I.T. Choi. Novel carbazole-based hole-transporting materials with star-shaped chemical structures for perovskite-sensitized solar cells[J]. ACS Appl. Mater. Interfaces, 2015,7:22213-22217. doi: 10.1021/acsami.5b04662

    47. [47]

      P. Gratia, A. Magomedov, T. Malinauskas. A methoxydiphenylamine-substituted carbazole twin derivative: an efficient hole-transporting material for perovskite solar cells[J]. Angew. Chem. Int. Ed, 2015,54:11409-11413. doi: 10.1002/anie.201504666

    48. [48]

      F.G. Zhang, X.C. Yang, M. Cheng. Engineering of hole-selective contact for low temperature-processed carbon counter electrode-based perovskite solar cells[J]. J. Mater. Chem. A, 2015,3:24272-24280. doi: 10.1039/C5TA07507F

    49. [49]

      J. Cao, Y.M. Liu, X.J. Jing. Well-defined thiolated nanographene as holetransporting material for efficient and stable perovskite solar cells[J]. J. Am. Chem. Soc., 2015,137:10914-10917. doi: 10.1021/jacs.5b06493

    50. [50]

      A. Krishna, D. Sabba, J. Yin. Facile synthesis of a furan-arylamine holetransporting material for high-efficiency, mesoscopic perovskite solar cells[J]. Chem. Eur. J., 2015,21:15113-15117. doi: 10.1002/chem.201503099

    51. [51]

      H. Nishimura, N. Ishida, A. Shimazaki. Hole-transporting materials with a two-dimensionally expanded π-system around an azulene core for efficient perovskite solar cells[J]. J. Am. Chem. Soc., 2015,137:15656-15659. doi: 10.1021/jacs.5b11008

    52. [52]

      J. Das, R.B.K. Siram, D. Cahen, B. Rybtchinski, G. Hodes. Thiophene-modified perylenediimide as hole transporting material in hybrid lead bromide perovskite solar cells[J]. J. Mater. Chem. A, 2015,3:20305-20312. doi: 10.1039/C5TA04828A

    53. [53]

      M.L. Petrus, T. Bein, T.J. Dingemans, P. Docampo. A low cost azomethine-based hole transporting material for perovskite photovoltaics[J]. J. Mater. Chem. A3, 2015:12159-12162.  

    54. [54]

      Y.S. Liu, Q. Chen, H.S. Duan. A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells[J]. J. Mater. Chem. A, 2015,3:11940-11947. doi: 10.1039/C5TA02502H

    55. [55]

      C. Steck, M. Franckevicius, S.M. Zakeeruddin. A-D-A-type S, N-heteropentacene-based hole transport materials for dopant-free perovskite solar cells[J]. J. Mater. Chem, 2015,3:17738-17746. doi: 10.1039/C5TA03865K

    56. [56]

      A. Abate, S. Paek, F. Giordano. Silolothiophene-linked triphenylamines as stable holetransporting materials for high efficiency perovskite solar cells[J]. Energy Environ. Sci., 2015,8:2946-2953. doi: 10.1039/C5EE02014J

    57. [57]

      C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties[J]. Inorg. Chem., 2013,52:9019-9038. doi: 10.1021/ic401215x

    58. [58]

      Y. Liu, Z. Hong, Q. Chen. Perovskite solar cells employing dopant-free organic hole transport materials with tunable energy levels[J]. Adv. Mater., 2016,28:440-446. doi: 10.1002/adma.v28.3

  • 加载中
    1. [1]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    2. [2]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    3. [3]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    4. [4]

      Aolei TanXiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276

    5. [5]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    6. [6]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

    7. [7]

      Yunjie DangYanru FengXiao ChenChaoxing HeShujie WeiDingyang LiuJinlong QiHuaxing ZhangShaokun YangZhiyun NiuBai Xiang . Development of a multi-level pH-responsive lipid nanoplatform for efficient co-delivery of siRNA and small-molecule drugs in tumor treatment. Chinese Chemical Letters, 2024, 35(12): 109660-. doi: 10.1016/j.cclet.2024.109660

    8. [8]

      Kezuo DiJie WeiLijun DingZhiying ShaoJunling ShaXilong ZhouHuadong HengXujing FengKun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911

    9. [9]

      Zhi LiShuya PanYuan TianShaowei LiuWeifeng WeiJinlin WangTianfeng ChenLing Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018

    10. [10]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    11. [11]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    12. [12]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    13. [13]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    14. [14]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    15. [15]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    16. [16]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

    17. [17]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    18. [18]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

    19. [19]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    20. [20]

      Wen-Bo Wei Qi-Long Zhu . Electrosynthesis of hydroxylamine from earth-abundant small molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100383-100383. doi: 10.1016/j.cjsc.2024.100383

Metrics
  • PDF Downloads(1)
  • Abstract views(740)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return