Citation: He-Wei Luo, Zi-Tong Liu. Recent developments of di-amide/imide-containing small molecular non-fullerene acceptors for organic solar cells[J]. Chinese Chemical Letters, ;2016, 27(8): 1283-1292. doi: 10.1016/j.cclet.2016.07.003 shu

Recent developments of di-amide/imide-containing small molecular non-fullerene acceptors for organic solar cells


  • Author Bio:
    Zi-Tong Liu is an Associate Professor at the Institute of Chemistry, Chinese Academy of Sciences. He received his PhD from the institute in 2008 after he got his Bachelor degree at Jilin University in 2003. He mainly focuses on organic electronics, including design and synthesis of π-functional materials, self-assembly and devices.
  • Corresponding author: Zi-Tong Liu, zitong_@iccas.ac.cn
  • Received Date: 23 May 2016
    Revised Date: 16 June 2016
    Accepted Date: 21 June 2016
    Available Online: 27 August 2016

Figures(3)

  • Non-fullerene organic solar cells have received increasing attentions in these years, and great progresses have been made since 2013. Among them, aromatic di-amide/imide-containing frameworks have shown promising applications. The outstanding properties of them are highly associated with their unique electronic and structural features, such as strong electron-withdrawing nature, broad absorption in UV-visible region, tunable HOMO/LUMO energy levels, easy modifications, and excellent chemical, thermal and photochemical stabilities. In this review, we give an overview of recent developments of aromatic diamide/imide-containing small molecules used as electron acceptors for organic solar cells.
  • 加载中
    1. [1]

      (a) L.Y. Lu, T.Y. Zheng, Q.H. Wu, et al., Recent advances in bulk heterojunction polymer solar cells, Chem. Rev. 115 (2015) 12666-12731;(b) A.J. Heeger, 25th anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation, Adv. Mater. 26 (2014) 10-28.

    2. [2]

      (a) Z.B. Henson, K. Mu¨ llen, G.C. Bazan, Design strategies for organic semiconductors beyond the molecular formula, Nat. Chem. 4 (2012) 699-704;(b) L. Ye, S.Q. Zhang, L.J. Huo, M.J. Zhang, J.H. Hou, Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene, Acc. Chem. Res. 47 (2014) 1595-1603;(c) Y.F. Li, Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption, Acc. Chem. Res. 5 (2012) 723-733.

    3. [3]

      Y. Liu, J. Zhao, Z. Li. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells[J]. Nat. Commun., 2014,55293. doi: 10.1038/ncomms6293

    4. [4]

      Y.F. Li. Fullerene-bisadduct acceptors for polymer solar cells[J]. Chem.-Asian J., 2013,10:2316-2328.  

    5. [5]

      (a) A.F. Eftaiha, J.P. Sun, I.G. Hill, G.C. Welch, Recent advances of non-fullerene, small molecular acceptors for solution processed bulk heterojunction solar cells, J.1290 H.-W. Luo, Z.-T. Liu / Chinese Chemical Letters 27 (2016) 1283-1292 Mater. Chem. A2 (2014) 1201-1213;(b) C.L. Zhan, X.L. Zhang, J.N. Yao, New advances in non-fullerene acceptor based organic solar cells, RSC Adv. 5 (2015) 93002-93026; (c) Y.Z. Lin, X.W. Zhan, Designing efficient non-fullerene acceptors by tailoring extended fused-rings with electron-deficient groups, Adv. Energy Mater. 5 (2015)(1501) 063;(d) X. Guo, D.D. Tu, X. Liu, Recent advances in rylene diimide polymer acceptors for all-polymer solar cells, J. Energ. Chem. 24 (2015) 675-685;(e) C.L. Zhan, J.N. Yao, More than conformational "twisting" or "coplanarity":molecular strategies for designing high-efficiency nonfullerene organic solar cells, Chem. Mater. 28 (2016) 1948-1964.

    6. [6]

      (a) W.C. Zhao, D.P. Qian, S.Q. Zhang, et al., Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability, Adv. Mater. (2016)4734-4739;(b) Y.Z. Lin, F.W. Zhao, Q. He, et al., High-performance electron acceptor with thienyl side chains for organic photovoltaics, J. Am. Chem. Soc. 138(2016) 4955-4961; (c) Y.Z. Lin, Q. He, F.W. Zhao, et al., A facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency, J. Am. Chem. Soc. 138 (2016) 2973-2976; (d) H.J. Bin, Z.G. Zhang, L. Gao, et al., Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency, J. Am. Chem. Soc. 138 (2016) 4657-4664.

    7. [7]

      (a) X.G. Guo, A. Facchetti, T.J. Marks, Imide- and amide-functionalized polymer semiconductors, Chem. Rev. 114 (2014) 8943-9021;(b) Z.T. Liu, G.X. Zhang, Z.X. Cai, et al., New organic semiconductors with imide/amide-containing molecular systems, Adv. Mater. 26 (2014) 6965-6977.

    8. [8]

      D.G. Farnum, G. Mehta, G.G.I. Moore, F.P. Siegal. Attempted reformatskii reaction of benzonitrile, 1, 4-diketo-3, 6-diphenylpyrrolo[J]. Tetrahedron Lett., 1974,15:2549-2552. doi: 10.1016/S0040-4039(01)93202-2

    9. [9]

      (a) Z.R. Yi, S. Wang, Y.Q. Liu, Design of high-mobility diketopyrrolopyrrole-based π-conjugated copolymers for organic thin-film transistors, Adv. Mater. 27 (2015) 3589-3606; (b) H.W. Luo, C.M. Yu, Z.T. Liu, et al., Remarkable enhancement of charge carrier mobility of conjugated polymer field-effect transistors upon incorporating an ionic additive, Sci. Adv. 2 (2016) e1600076; (c) X.K. Gao, Z. Zhao, High mobility organic semiconductors for field-effect transistors, Sci. Chin. Chem. 58 (2015) 947-968.

    10. [10]

      W.W. Li, K.H. Hendriks, M.M. Wien, R.A.J. Janssen. Diketopyrrolopyrrole polymers for organic solar cells[J]. Acc. Chem. Res., 2016,49:78-85. doi: 10.1021/acs.accounts.5b00334

    11. [11]

      M. Kaur, D.H. Choi. Diketopyrrolopyrrole: brilliant red pigment dye-based fluorescent probes and their applications[J]. Chem. Soc. Rev., 2015,44:58-77. doi: 10.1039/C4CS00248B

    12. [12]

      Y.Z. Lin, Y.F. Li, X.W. Zhan. A solution-processable electron acceptor based on dibenzosilole and diketopyrrolopyrrole for organic solar cells[J]. Adv. Energy Mater, 2013,3:724-728. doi: 10.1002/aenm.201200911

    13. [13]

      H. Patil, W.X. Zu, A. Gupta. A non-fullerene electron acceptor based on fluorene and diketopyrrolopyrrole building blocks for solution-processable organic solar cells with an impressive open-circuit voltage[J]. Phys. Chem. Chem. Phys, 2014,16:23837-23842. doi: 10.1039/C4CP03727H

    14. [14]

      S.X. Li, J.L. Yan, C.Z. Li. A non-fullerene electron acceptor modified by thiophene-2-carbonitrile for solution-processed organic solar cells[J]. J. Mater. Chem. A, 2016,4:3777-3783. doi: 10.1039/C6TA00056H

    15. [15]

      H.Q. Shi, W.F. Fu, M.M. Shi, J. Ling, H.Z. Chen. A solution-processable bipolar diketopyrrolopyrrole molecule used as both electron donor and acceptor for efficient organic solar cells[J]. J. Mater. Chem. A, 2015,3:1902-1905. doi: 10.1039/C4TA06035K

    16. [16]

      A.M. Raynor, A. Gupta, H. Patil, A. Bilic, S.V. Bhosale. A diketopyrrolopyrrole and benzothiadiazole based small molecule electron acceptor: design, synthesis, characterization and photovoltaic properties[J]. RSC Adv, 2014,4:57635-57638. doi: 10.1039/C4RA09668A

    17. [17]

      C.M. Yu, C. He, Y. Yang. New conjugated molecules with two and three dithienyldiketopyrrolopyrrole (DPP) moieties substituted at meta positions of benzene toward p- and n-type organic photovoltaic materials[J]. Chem. Asian J., 2014,9:1570-1578. doi: 10.1002/asia.v9.6

    18. [18]

      Y. Yang, G.X. Zhang, C.M. Yu. New conjugated molecular scaffolds based on[J]. Chem. Commun., 2014,50:9939-9942. doi: 10.1039/C4CC04384G

    19. [19]

      X.F. Wu, W.F. Fu, Z. Xu. Spiro linkage as an alternative strategy for promising nonfullerene acceptors in organic solar cells[J]. Adv. Funct. Mater., 2015,25:5954-5966. doi: 10.1002/adfm.201502413

    20. [20]

      S.X. Li, W.Q. Liu, M.M. Shi. A spirobifluorene and diketopyrrolopyrrole moieties based non-fullerene acceptor for efficient and thermally stable polymer solar cells with high open-circuit voltage[J]. Energy Environ. Sci, 2016,9:604-610. doi: 10.1039/C5EE03481G

    21. [21]

      (a) E. Wang, W. Mammo, M.R. Andersson, 25th anniversary article: isoindigobased polymers and small molecules for bulk heterojunction solar cells and field effect transistors, Adv. Mater. 26 (2014) 1801-1826;(b) T. Lei, J.Y. Wang, J. Pei, Design synthesis, and structure-property relationships of isoindigo-based conjugated polymers, Acc. Chem. Res. 47 (2014) 1117-1126;(c) J.G. Mei, K.R. Graham, R. Stalder, J.R. Reynolds, Synthesis of isoindigo-based oligothiophenes for molecular bulk heterojunction solar cells, Org. Lett. 12 (2010) 660-663.

    22. [22]

      A.D. Hendsbee, S.M. McAfee, J.P. Sun. Phthalimide-based π-conjugated small molecules with tailored electronic energy levels for use as acceptors in organic solar cells[J]. J. Mater. Chem. C, 2015,3:8904-8915. doi: 10.1039/C5TC01877C

    23. [23]

      J.M. Topple, S.M. McAfee, G.C. Welch, I.G. Hill. Pivotal factors in solution-processed, non-fullerene, all small-molecule organic solar cell device optimization[J]. Org. Electron., 2015,27:197-201. doi: 10.1016/j.orgel.2015.09.020

    24. [24]

      S.M. McAfee, J.M. Topple, J.P. Sun, I.G. Hill, G.C. Welch. The structural evolution of an isoindigo-based non-fullerene acceptor for use in organic photovoltaics[J]. RSC Adv., 2015,5:80098-80109. doi: 10.1039/C5RA16696A

    25. [25]

      X. Liu, Y. Xie, H.B. Zhao. Star-shaped isoindigo-based small molecules as potential non-fullerene acceptors in bulk heterojunction solar cells[J]. N. J. Chem., 2015,39:8771-8779. doi: 10.1039/C5NJ01893E

    26. [26]

      (a) X.W. Zhan, A. Facchetti, S. Barlow, et al., Rylene and related diimides for organic electronics, Adv. Mater. 23 (2011) 268-284;(b) W. Jiang, Y. Li, Z.H. Wang, Tailor-made rylene arrays for high performance nchannel semiconductors, Acc. Chem. Res. 47 (2014) 3135-3147.

    27. [27]

      Y.Z. Lin, Y.Y. Li, X.W. Zhan. Small molecule semiconductors for high-efficiency organic photovoltaics[J]. Chem. Soc. Rev., 2012,41:4245-4272. doi: 10.1039/c2cs15313k

    28. [28]

      (a) X.K. Gao, Y.B. Hu, Development of n-type organic semiconductors for thin film transistors: a viewpoint of molecular design, J. Mater. Chem. C 2 (2014)3099-3117;(b) C. Li, H. Wonneberger, Perylene imides for organic photovoltaics: yesterday, today, and tomorrow, Adv. Mater. 24 (2012) 613-636.

    29. [29]

      C.W. Tang. Two-layer organic photovoltaic cell[J]. Appl. Phys. Lett., 1986,48183. doi: 10.1063/1.96937

    30. [30]

      X.Y. Guo, L.J. Bu, Y. Zhao. Controlled phase separation for efficient energy conversion in dye/polymer blend bulk heterojunction photovoltaic cells[J]. Thin Solid Films, 2009,517:4654-4657. doi: 10.1016/j.tsf.2009.02.082

    31. [31]

      A. Sharenko, C.M. Proctor, T.S. van der Poll. A high-performing solutionprocessed small molecule:perylene diimide bulk heterojunction solar cell[J]. Adv. Mate, 2013,25:4403-4406. doi: 10.1002/adma.v25.32

    32. [32]

      Y.X. Chen, X. Zhang, C.L. Zhan, J.N. Yao. In-depth understanding of photocurrent enhancement in solution-processed small-molecule:perylene diimide non-fullerene organic solar cells[J]. Phys. Status Solidi A, 2015,212:1961-1968. doi: 10.1002/pssa.201532102

    33. [33]

      R. Singh, E. Aluicio-Sarduy, Z. Kan. Fullerene-free organic solar cells with an efficiency of 3.7% based on a low-cost geometrically planar perylene diimide monomer[J]. J. Mater. Chem. A, 2014,2:14348-14353. doi: 10.1039/C4TA02851A

    34. [34]

      P.E. Hartnett, A. Timalsina, H.S.S.R. Matte. Slip-stacked perylenediimides as an alternative strategy for high efficiency nonfullerene acceptors in organic photovoltaics[J]. J. Am. Chem. Soc., 2014,136:16345-16356. doi: 10.1021/ja508814z

    35. [35]

      Y.H. Cai, L.J. Huo, X.B. Sun. High performance organic solar cells based on a twisted bay-substituted tetraphenyl functionalized perylenediimide electron acceptor[J]. Adv. Energy Mater., 2015,51500032. doi: 10.1002/aenm.201500032

    36. [36]

      R. Shivanna, S. Shoaee, S. Dimitrov. Charge generation and transport in efficient organic bulk heterojunction solar cells with a perylene acceptor[J]. Energy Environ. Sci., 2014,7:435-441. doi: 10.1039/C3EE42484G

    37. [37]

      L. Ye, K. Sun, W. Jiang. Enhanced efficiency in fullerene-free polymer solar cell by incorporating fine-designed donor and acceptor materials[J]. ACS Appl. Mater. Interfaces, 2015,7:9274-9280. doi: 10.1021/acsami.5b02012

    38. [38]

      X. Zhang, Z.H. Lu, L. Ye. A potential perylene diimide dimer-based acceptor material for highly efficient solution-processed non-fullerene organic solar cells with 4.03% efficiency[J]. Adv. Mater, 2013,25:5791-5797. doi: 10.1002/adma.v25.40

    39. [39]

      X. Zhang, C.L. Zhan, J.N. Yao. Non-fullerene organic solar cells with 6.1% efficiency through fine-tuning parameters of the film-forming process[J]. Chem. Mater., 2015,27:166-173. doi: 10.1021/cm504140c

    40. [40]

      X. Zhang, J.N. Yao, C.L. Zhan. A selenophenyl bridged perylene diimide dimer as an efficient solution-processable small molecule acceptor[J]. Chem. Commun, 2015,51:1058-1061. doi: 10.1039/C4CC08457H

    41. [41]

      Z.H. Lu, B. Jiang, X. Zhang. Perylene-diimide based non-fullerene solar cells with 4.34% efficiency through engineering surface donor/acceptor compositions[J]. Chem. Mater., 2014,26:2907-2914. doi: 10.1021/cm5006339

    42. [42]

      Q.F. Yan, Y. Zhou, Y.Q. Zheng, J. Pei, D.H. Zhao. Towards rational design of organic electron acceptors for photovoltaics: a study based on perylenediimide derivatives[J]. Chem. Sci., 2013,4:4389-4394. doi: 10.1039/c3sc51841h

    43. [43]

      J.B. Zhao, Y.K. Li, H.R. Lin. High-efficiency non-fullerene organic solar cells enabled by a difluorobenzothiadiazole-based donor polymer combined with a properly matched small molecule acceptor[J]. Energy Environ. Sci., 2015,8:520-525. doi: 10.1039/C4EE02990A

    44. [44]

      Y.F. Li, D.B. Zhu, X.W. Zhan. A twisted dimeric perylene diimide electron acceptor for efficient organic solar cells[J]. Adv. Energy Mater, 2014,41400420. doi: 10.1002/aenm.201400420

    45. [45]

      W. Jiang, L. Ye, X.G. Li. Bay-linked perylene bisimides as promising nonfullerene acceptors for organic solar cells[J]. Chem. Commun., 2014,50:1024-1026. doi: 10.1039/C3CC47204C

    46. [46]

      Y. Zang, C.Z. Li, C.C. Chueh. Integrated molecular, interfacial, and device engineering towards high-performance non-fullerene based organic solar cells[J]. Adv. Mater., 2014,26:5708-5714. doi: 10.1002/adma.201401992

    47. [47]

      D. Sun, D. Meng, Y.H. Cai. Non-fullerene-acceptor-based bulk-heterojunction organic solar cells with efficiency over 7%[J]. J. Am. Chem. Soc., 2015,137:11156-11162. doi: 10.1021/jacs.5b06414

    48. [48]

      T. Liu, D. Meng, Y. Cai. High performance of non-fullerene organic cells based on a selenium-containing polymer donor and a twisted perylene bisimide acceptor[J]. Adv. Sci, 20161600117.  

    49. [49]

      D. Meng, D. Sun, C.M. Zhong. High-performance solution-processed nonfullerene organic solar cells based on selenophene-containing perylene bisimide acceptor[J]. J. Am. Chem. Soc., 2016,138:375-380. doi: 10.1021/jacs.5b11149

    50. [50]

      D.L. Zhao, Q.H. Wu, Z.X. Cai. Electron acceptors based on a-substituted perylene diimide (PDI) for organic solar cells[J]. Chem. Mater., 2016,28:1139-1146. doi: 10.1021/acs.chemmater.5b04570

    51. [51]

      C.H. Wu, C.C. Chueh, Y.Y. Xi. Influence of molecular geometry of perylene diimide dimers and polymers on bulk heterojunction morphology toward highperformance nonfullerene polymer solar cells[J]. Adv. Funct. Mater., 2015,25:5326-5332. doi: 10.1002/adfm.201501971

    52. [52]

      (a) Y. Zhong, M.T. Trinh, R.S. Chen, et al., Efficient organic solar cells with helical perylene diimide electron acceptors, J. Am. Chem. Soc. 136 (2014) 15215-15221; (b) Y. Zhong, M.T. Trinh, R.S. Chen, et al., Molecular helices as electron acceptors H.-W. Luo, Z.-T. Liu / Chinese Chemical Letters 27 (2016) 1283-1292 1291 in high-performance bulk heterojunction solar cells, Nat. Commun. 6 (2015) 8242.

    53. [53]

      P.E. Hartnett, H.S.S.R. Matte, N.D. Eastham. Ring-fusion as a perylenediimide dimer design concept for high-performance non-fullerene organic photovoltaic acceptors[J]. Chem. Sci, 2016:3543-3555.  

    54. [54]

      Y.Z. Lin, Y.F. Wang, J.Y. Wang. A star-shaped perylene diimide electron acceptor for high-performance organic solar cells[J]. Adv. Mater, 2014,26:5137-5142. doi: 10.1002/adma.201400525

    55. [55]

      Y.H. Liu, C. Mu, K. Jiang. A tetraphenylethylene core-based 3D structure small molecular acceptor enabling efficient non-fullerene organic solar cells[J]. Adv. Mate, 2015,27:1015-1020. doi: 10.1002/adma.201404152

    56. [56]

      Y.H. Liu, J.Y.L. Lai, S.S. Chen. Efficient non-fullerene polymer solar cells enabled by tetrahedron-shaped core based 3D-structure small-molecular electron acceptors[J]. J. Mater. Chem. A, 2015,3:13632-13636. doi: 10.1039/C5TA03093E

    57. [57]

      (a) W.Q. Chen, X. Yang, G.K. Long, et al., A perylene diimide (PDI)-based small molecule with tetrahedral configuration as a non-fullerene acceptor for organic solar cells, J. Mater. Chem. C3 (2015) 4698-4705; (b) Q. Wu, D. Zhao, A.M. Schneider, W. Chen, L. Yu, Covalently bound clusters of alpha-substituted PDI-rival electron acceptors to fullerene for organic solar cells, J. Am. Chem. Soc. (2016) 7248-7251.

    58. [58]

      E. Ahmed, G.Q. Ren, F.S. Kim, E.C. Hollenbeck, S.A. Jenekhe. Design of new electron acceptor materials for organic photovoltaics: synthesis, electron transport, photophysics, and photovoltaic properties of oligothiophene-functionalized naphthalene diimides[J]. Chem. Mater., 2011,23:4563-4577. doi: 10.1021/cm2019668

    59. [59]

      Z.H. Mao, T.P. Le, K. Vakhshouri. Processing additive suppresses phase separation in the active layer of organic photovoltaics based on naphthalene diimide[J]. Org. Electron., 2014,15:3384-3391. doi: 10.1016/j.orgel.2014.09.021

    60. [60]

      H. Patil, A. Gupta, A. Bilic, S.V. Bhosale, S.V. Bhosale. A solution-processable electron acceptor based on diketopyrrolopyrrole and naphthalenediimide motifs for organic solar cells[J]. Tetrahedron Lett, 2014,55:4430-4432. doi: 10.1016/j.tetlet.2014.06.017

    61. [61]

      X. Wang, J.H. Huang, Z.X. Niu. Dimeric naphthalene diimide based small molecule acceptors: synthesis, characterization, and photovoltaic properties[J]. Tetrahedron, 2014,70:4726-4731. doi: 10.1016/j.tet.2014.05.058

    62. [62]

      A. Gupta, R.V. Hangarge, X.Z. Wang. Crowning of dibenzosilole with a naphthalenediimide functional group to prepare an electron acceptor for organic solar cells[J]. Dyes Pigm., 2015,120:314-321. doi: 10.1016/j.dyepig.2015.04.033

    63. [63]

      Y. Liu, L. Zhang, H. Lee. NDI-based small molecule as promising nonfullerene acceptor for solution-processed organic photovoltaics[J]. Adv. Energy Mater, 2015,51500195. doi: 10.1002/aenm.201500195

    64. [64]

      H.Y. Li, F.S. Kim, G.Q. Ren. Tetraazabenzodifluoranthene diimides: building blocks for solution-processable n-type organic semiconductors[J]. Angew. Chem. Int. Ed., 2013,52:5513-5517. doi: 10.1002/anie.201210085

    65. [65]

      H.Y.Li, T.Earmme, G.Q.Ren, etal.. Beyondfullerenes:designofnonfullereneacceptors for efficient organic photovoltaics[J]. J. Am. Chem. Soc., 2014,136:14589-14597. doi: 10.1021/ja508472j

    66. [66]

      H.Y. Li, Y.J. Hwang, B.A.E. Courtright. Fine-tuning the 3D structure of nonfullerene electron acceptors toward high-performance polymer solar cells[J]. Adv. Mater., 2015,27:3266-3272. doi: 10.1002/adma.v27.21

    67. [67]

      H.Y. Li, T. Earmme, S. Subramaniyan, S.A. Jenekhe. Bis(naphthalene imide)diphenylanthrazolines: a new class of electron acceptors for efficient nonfullerene organic solar cells and applicable to multiple donor polymers[J]. Adv. Energy Mater., 2015,51402041. doi: 10.1002/aenm.201402041

    68. [68]

      J.T. Bloking, X. Han, A.T. Higgs. Solution-processed organic solar cells with power conversion efficiencies of 2.5% using benzothiadiazole/imide-based acceptors[J]. Chem. Mater., 2011,23:5484-5490. doi: 10.1021/cm203111k

    69. [69]

      J.D. Douglas, M.S. Chen, J.R. Niskala. Solution-processed, molecular photovoltaics that exploit hole transfer from non-fullerene, n-type materials[J]. Adv. Mater., 2014,26:4313-4319. doi: 10.1002/adma.v26.25

    70. [70]

      S. Jinnai, Y. Ie, M. Karakawa. Electron-accepting π-conjugated systems for organic photovoltaics: influence of structural modification on molecular orientation at donor-acceptor interfaces[J]. Chem. Mater., 2016,28:1705-1713. doi: 10.1021/acs.chemmater.5b04551

    71. [71]

      O.K. Kwon, J.H. Park, S.K. Park, S.Y. Park. Soluble dicyanodistyrylbenzene-based non-fullerene electron acceptors with optimized aggregation behavior for highefficiency organic solar cells[J]. Adv. Energy Mater., 2015,51400929. doi: 10.1002/aenm.201400929

    72. [72]

      O.K., J.H.Park, D.W.Kim, S.K.Park, S.Y.Park. An all-small-moleculeorganicsolar cell with high efficiency nonfullerene acceptor[J]. Adv. Mater., 2015,27:1951-1956. doi: 10.1002/adma.v27.11

    73. [73]

      S. Chatterjee, Y. Ie, M. Karakawa, Y. Aso. Naphtho[J]. Adv. Funct. Mater., 2016,26:1161-1168. doi: 10.1002/adfm.v26.8

    74. [74]

      (a) C. Cabanetos, A.E. Labban, J.A. Bartelt, et al., Linear side chains in benzo[1, 2-b:4, 5-b0]dithiophene-thieno[3, 4-c]pyrrole-4, 6-dione polymers direct self-assembly and solar cell performance, J. Am. Chem. Soc. 135 (2013) 4656-4659; (b) A.T. Yiu, P.M. Beaujuge, O.P. Lee, et al., Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient dolar cells, J. Am. Chem. Soc. 134 (2012) 2180-2185; (c) J.J. Yao, C.M. Yu, Z.T. Liu, et al., Significant improvement of semiconducting performance of the diketopyrrolopyrrole-quaterthiophene conjugated polymer through side-chain engineering via hydrogen-bonding, J. Am. Chem. Soc. 138 (2016) 173-185.

  • 加载中
    1. [1]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    2. [2]

      Zhiyang ZhangYi ChenYingnan ZhangChuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083

    3. [3]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    4. [4]

      Wen-Bo Wei Qi-Long Zhu . Electrosynthesis of hydroxylamine from earth-abundant small molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100383-100383. doi: 10.1016/j.cjsc.2024.100383

    5. [5]

      Zhi LiShuya PanYuan TianShaowei LiuWeifeng WeiJinlin WangTianfeng ChenLing Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018

    6. [6]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

    7. [7]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    8. [8]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2023.100463

    9. [9]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    10. [10]

      Aolei TanXiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276

    11. [11]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    12. [12]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    13. [13]

      Yunjie DangYanru FengXiao ChenChaoxing HeShujie WeiDingyang LiuJinlong QiHuaxing ZhangShaokun YangZhiyun NiuBai Xiang . Development of a multi-level pH-responsive lipid nanoplatform for efficient co-delivery of siRNA and small-molecule drugs in tumor treatment. Chinese Chemical Letters, 2024, 35(12): 109660-. doi: 10.1016/j.cclet.2024.109660

    14. [14]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    15. [15]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    16. [16]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    17. [17]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    18. [18]

      Zhigang ZengChangzhou LiaoLei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349

    19. [19]

      Qian WangYeping BianGagan DhawanWei ZhangAlexander E. SorochinskyAta MakaremVadim A. SoloshonokJianlin Han . FDA approved fluorine-containing drugs in 2023. Chinese Chemical Letters, 2024, 35(11): 109780-. doi: 10.1016/j.cclet.2024.109780

    20. [20]

      Wei SunAnjing LiaoLi LeiXu TangYa WangJian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855

Metrics
  • PDF Downloads(0)
  • Abstract views(728)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return