Citation: Teng-Fei Fu, Lei Ao, Zong-Chun Gao, Xiao-Long Zhang, Feng Wang. Advances on supramolecular assembly of cyclometalated platinum(II) complexes[J]. Chinese Chemical Letters, ;2016, 27(8): 1147-1154. doi: 10.1016/j.cclet.2016.06.054 shu

Advances on supramolecular assembly of cyclometalated platinum(II) complexes

  • Corresponding author: Feng Wang, applications.drfwang@ustc.edu.cn
  • Received Date: 16 May 2016
    Revised Date: 4 June 2016
    Accepted Date: 21 June 2016
    Available Online: 26 August 2016

Figures(12)

  • Organoplatinum(II) compounds have received enormous attention over the past decades due to their square-planar geometry as well as intriguing photo-physical properties. Self-assembly has emerged as an excellent approach to create well-ordered supramolecular architectures with tunable properties, which underpin the role of solvent-directed approach for the design of functional materials. In this minireview, the recent advances on supramolecular self-assembly of cyclometalated platinum(II) complexes have been discussed. During the self-assembly process, non-covalent Pt-Pt and π-π interactions play crucial roles in controlling the structures and functions of the resulting assemblies.
  • 加载中
    1. [1]

      I. Eryazici, C.N. Moorefield, G.R. Newkome. Square-planar Pd(II), Pt(II), and Au(III) terpyridine complexes: their syntheses, physical properties, supramolecular constructs, and biomedical activities[J]. Chem. Rev., 2008,108:1834-1895. doi: 10.1021/cr0781059

    2. [2]

      K.M.C. Wong, V.W.W. Yam. Self-assembly of luminescent alkynylplatinum(II) terpyridyl complexes: modulation of photophysical properties through aggregation behavior[J]. Acc. Chem. Res., 2011,44:424-434. doi: 10.1021/ar100130j

    3. [3]

      A. Aliprandi, D. Genovese, M. Mauro, L. De Cola. Recent advances in phosphorescent Pt(II) complexes featuring metallophilic interactions: properties and applications[J]. Chem. Lett., 2015,44:1152-1169. doi: 10.1246/cl.150592

    4. [4]

      K.M.C. Wong, M.M.Y. Chan, V.W.W. Yam. Supramolecular assembly of metalligand chromophores for sensing and phosphorescent OLED applications[J]. Adv. Mater., 2014,26:5558-5568. doi: 10.1002/adma.201306327

    5. [5]

      V.W.W. Yam, V.K.M. Au, S.Y.L. Leung. Light-emitting self-assembled materials based on d8 and d10 transition metal complexes[J]. Chem. Rev., 2015,115:7589-7728. doi: 10.1021/acs.chemrev.5b00074

    6. [6]

      T.C. Johnstone, K. Suntharalingam, S.J. Lippard. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs[J]. Chem. Rev., 2016,116:3436-3486. doi: 10.1021/acs.chemrev.5b00597

    7. [7]

      J.J. Wilson, S.J. Lippard. Synthetic methods for the preparation of platinum anticancer complexes[J]. Chem. Rev., 2014,114:4470-4495. doi: 10.1021/cr4004314

    8. [8]

      J.A.G. Williams, S. Develay, D.L. Rochester, L. Murphy. Optimising the luminescence of platinum(II) complexes and their application in organic light emitting devices (OLEDs)[J]. Coord. Chem. Rev., 2008,252:2596-2611. doi: 10.1016/j.ccr.2008.03.014

    9. [9]

      K.M.C. Wong, V.W.W. Yam. Luminescence platinum(II) terpyridyl complexes-from fundamental studies to sensory functions[J]. Coord. Chem. Rev., 2007,251:2477-2488. doi: 10.1016/j.ccr.2007.02.003

    10. [10]

      Y. Li, L. Zhao, A.Y.Y. Tam. Luminescent amphiphilic 2,6-Bis (1, 2, 3-triazol-4-yl) pyridine-platinum (II) complexes: synthesis, characterization, electrochemical, photophysical, and Langmuir-Blodgett film-formation studies[J]. Chem. Eur. J., 2013,19:14496-14505. doi: 10.1002/chem.v19.43

    11. [11]

      M.D. Ward, P.R. Raithby. Functional behaviour from controlled self-assembly: challenges and prospects[J]. Chem. Soc. Rev., 2013,42:1619-1636. doi: 10.1039/C2CS35123D

    12. [12]

      Y.J. Tian, E.W. Meijer, F. Wang. Cooperative self-assembly of platinum(II) acetylide complexes[J]. Chem. Commun., 2013,49:9197-9199. doi: 10.1039/c3cc44997a

    13. [13]

      C.Y.S. Chung, S.P.Y. Li, M.W. Louie, K.K.W. Lob, V.W.W. Yam. Induced self-assembly and disassembly of water-soluble alkynylplatinum(II) terpyridyl complexes with "switchable" near-infrared (NIR) emission modulated by metal-metal interactions over physiological pH: demonstration of pH-responsive NIR luminescent probes in cell-imaging studies[J]. Chem. Sci., 2013,4:2453-2462. doi: 10.1039/c3sc50196e

    14. [14]

      C.A. Strassert, C.H. Chien, M.D.G. Lopez. Switching on luminescence by the self-assembly of a platinum(II) complex into gelating nanofibers and electroluminescent films[J]. Angew. Chem. Int. Ed., 2011,50:946-950. doi: 10.1002/anie.201003818

    15. [15]

      M. Mauro, A. Aliprandi, D. Septiadi, N.S. Kehr, L. De Cola. When self-assembly meets biology: luminescent platinum complexes for imaging applications[J]. Chem. Soc. Rev., 2014,43:4144-4166. doi: 10.1039/c3cs60453e

    16. [16]

      C. Po, A.Y.Y. Tam, V.W.W. Yam. Tuning of spectroscopic properties via variation of the alkyl chain length: a systematic study of molecular structural changes on selfassembly of amphiphilic sulfonate-pendant platinum(II) bzimpy complexes in aqueous medium[J]. Chem. Sci., 2014,5:2688-2695. doi: 10.1039/c4sc00411f

    17. [17]

      C.Y.S. Chung, V.W.W. Yam. Dual pH- and temperature-responsive metallosupramolecular block copolymers with tunable critical micelle temperature by modulation of the self-assembly of NIR-emissive alkynylplatinum(II) complexes induced by changes in hydrophilicity and electrostatic effects[J]. Chem. Eur. J., 2013,19:13182-13192. doi: 10.1002/chem.v19.39

    18. [18]

      L.B. Xing, S. Yu, X.J. Wang. Reversible multistimuli-responsive vesicles formed by an amphiphilic cationic platinum(II) terpyridyl complex with a ferrocene unit in water[J]. Chem. Commun., 2012,48:10886-10888. doi: 10.1039/c2cc35960j

    19. [19]

      C. Po, A.Y.Y. Tam, K.M.C. Wong, V.W.W. Yam. Supramolecular self-assembly of amphiphilic anionic platinum(II) complexes: a correlation between spectroscopic and morphological properties[J]. J. Am. Chem. Soc., 2011,133:12136-12143. doi: 10.1021/ja203920w

    20. [20]

      K.Y. Liu, L.Y. Meng, S.L. Mo. Colour change and luminescence enhancement in a cholesterol-based terpyridyl platinum metallogel via sonication[J]. J. Mater. Chem. C, 2013,1:1753-1762. doi: 10.1039/c2tc00643j

    21. [21]

      Y. Sun, K. Ye, H. Zhang. Luminescent one-dimensional nanoscale materials with PtII…PtII interactions[J]. Angew. Chem. Int. Ed., 2006,45:5610-5613. doi: 10.1002/(ISSN)1521-3773

    22. [22]

      M. Mauro, A. Aliprandi, C. Cebrián. Self-assembly of a neutral platinum(II) complex into highly emitting microcrystalline fibers through metallophilic interactions[J]. Chem. Commun., 2014,50:7269-7272. doi: 10.1039/c4cc01045k

    23. [23]

      A. Aliprandi, M. Mauro, L. De Cola. Controlling and imaging biomimetic selfassembly[J]. Nat. Chem., 2016,8:10-15.  

    24. [24]

      M.E. Robinson, D.J. Lunn, A. Nazemi. Length control of supramolecular polymeric nanofibers based on stacked planar platinum(II) complexes by seededgrowth[J]. Chem. Commun., 2015,51:15921-15924. doi: 10.1039/C5CC06606A

    25. [25]

      M.Y. Yuen, V.A.L. Roy, W. Lu. Semiconducting and electroluminescent nanowires self-assembled from organoplatinum(II) complexes[J]. Angew. Chem. Int. Ed., 2008,47:9895-9899. doi: 10.1002/anie.v47:51

    26. [26]

      X.S. Xiao, W.L. Kwong, X.G. Guan. Platinum(II) and Gold(III) allenylidene complexes: phosphorescence, self-assembled nanostructures and cytotoxicity[J]. Chem. Eur. J., 2013,19:9457-9462. doi: 10.1002/chem.201301481

    27. [27]

      S.Y.L. Leung, K.M.C. Wong, V.W.W. Yam. Self-assembly of alkynylplatinum(II) terpyridine amphiphiles into nanostructures via steric control and metal-metal interactions[J]. Proc. Natl. Acad. Sci. U. S. A., 2016,113:2845-2850. doi: 10.1073/pnas.1601673113

    28. [28]

      Y.K. Tian, Y.G. Shi, Z.S. Yang, F. Wang. Responsive supramolecular polymers based on the bis[alkynylplatinum(II)] terpyridine molecular tweezer/arene recognition motif[J]. Angew. Chem. Int. Ed., 2014,53:6090-6094. doi: 10.1002/anie.201402192

    29. [29]

      H.Q. Liu, X.H. Han, Z.C. Gao, Z. Gao, F. Wang. Linear supramolecular polymers via connecting telechelic polycaprolactone through alkynylplatinum(ii) terpyridine molecular tweezer/pyrene recognition motif[J]. Macromol. Rapid Commun., 2016,37:718-724. doi: 10.1002/marc.v37.8

    30. [30]

      Y.K. Tian, Z.S. Yang, X.Q. Lv, R.S. Yao, F. Wang. Construction of supramolecular hyperbranched polymers via the "tweezering directed self-assembly" strategy[J]. Chem. Commun., 2014,50:9477-9480. doi: 10.1039/C4CC03158J

    31. [31]

      Y. Chen, K. Li, W. Lu. Photoresponsive supramolecular organometallic nanosheets induced by PtII…PtII and C-H…π interactions[J]. Angew. Chem. Int. Ed., 2009,48:9909-9913. doi: 10.1002/anie.v48:52

    32. [32]

      C.M. Che, C.F. Chow, M.Y. Yuen. Single microcrystals of organoplatinum(II) complexes with high charge-carrier mobility[J]. Chem. Sci., 2011,2:216-220. doi: 10.1039/C0SC00479K

    33. [33]

      F. Camerel, R. Ziessel, B. Donnio. Formation of gels and liquid crystals induced by PtI…Pt and π-π* interactions in luminescent σ-alkynyl platinum(II) terpyridine complexes[J]. Angew. Chem. Int. Ed., 2007,46:2659-2662. doi: 10.1002/(ISSN)1521-3773

    34. [34]

      X.S. Xiao, W. Lu, C.M. Che. Phosphorescent nematic hydrogels and chromonic mesophases driven by intra- and intermolecular interactions of bridged dinuclear cyclometalated platinum(II) complexes[J]. Chem. Sci., 2014,5:2482-2488. doi: 10.1039/c4sc00143e

    35. [35]

      M. Shirakawa, N. Fujita, T. Tani. Organogels of 8-quinolinol/metal(II)-chelate derivatives that show electron- and light-emitting properties[J]. Chem. Eur. J., 2007,13:4155-4162. doi: 10.1002/(ISSN)1521-3765

    36. [36]

      A.Y.Y. Tam, K.M.C. Wong, V.W.W. Yam. Unusual luminescence enhancement of metallogels of alkynylplatinum(II) 2,6-bis(N-alkylbenzimidazol-2'-yl) pyridine complexes upon a gel-to-sol phase transition at elevated temperatures[J]. J. Am. Chem. Soc., 2009,131:6253-6260. doi: 10.1021/ja900895x

    37. [37]

      T. Tu, W.W. Fang, X.L. Bao, X.B. Li, K.H. Dötz. Visual chiral recognition through enantioselective metallogel collapsing: synthesis, characterization, and application of platinum-steroid low-molecular-mass gelators[J]. Angew. Chem. Int. Ed., 2011,50:6601-6605. doi: 10.1002/anie.v50.29

    38. [38]

      A.Y.Y. Tam, V.W.W. Yam. Recent advances in metallogels[J]. Chem. Soc. Rev., 2013,42:1540-1567. doi: 10.1039/c2cs35354g

    39. [39]

      M. Shirakawa, N. Fujita, T. Tani, K. Kaneko, S. Shinkai. Organogel of an 8-quinolinol platinum(II) chelate derivative and its efficient phosphorescence emission effected by inhibition of dioxygen quenching[J]. Chem. Commun., 2005,33:4149-4151.  

    40. [40]

      D. Kumaresan, K. Lebkowsky, R.H. Schmehl. Photoinduced charge separation and recombination in solution and in gels of a Pt(II) terpyridyl-naphthalene diimide complex[J]. J. Photochem. Photobio. A Chem., 2009,207:86-93. doi: 10.1016/j.jphotochem.2009.03.013

    41. [41]

      W. Lu, Y.C. Law, J. Han. A dicationic organoplatinum(II) complex containing a bridging 2,5-Bis-(4-ethynylphenyl)-[1,3,4] oxadiazole ligand behaves as a phosphorescent gelator for organic solvents[J]. Chem. Asian J., 2008,3:59-69. doi: 10.1002/(ISSN)1861-471X

    42. [42]

      N.K. Allampally, M. Bredol, C.A. Strassert, L. De Cola. Highly phosphorescent supramolecular hydrogels based on platinum emitters[J]. Chem. Eur. J., 2014,20:16863-16868. doi: 10.1002/chem.201403772

    43. [43]

      K.C. Chang, J.L. Lin, Y.T. Shen. Synthesis and photophysical properties of self-assembled metallogels of platinum(II) acetylide complexes with elaborate long-chain pyridine-2,6-dicarboxamides[J]. Chem. Eur. J., 2012,18:1312-1321. doi: 10.1002/chem.v18.5

    44. [44]

      J.L.L. Tsai, T.T. Zou, J. Liu. Luminescent platinum(II) complexes with selfassembly and anti-cancer properties: hydrogel, pH dependent emission color and sustained-release properties under physiological conditions[J]. Chem. Sci., 2015,6:3823-3830. doi: 10.1039/C4SC03635B

    45. [45]

      A.Y. Tam, K.C. Wong, N.Y. Zhu, G.X. Wang, V.W. Yam. Luminescent alkynylplatinum(II) terpyridyl metallogels stabilized by Pt…Pt, π-π, and hydrophobic-hydrophobic interactions[J]. Langmuir, 2009,25:8685-8695. doi: 10.1021/la804326c

    46. [46]

      N.K. Allampally, C.A. Strassert, L. De Cola. Luminescent gels by self-assembling platinum complexes[J]. Dalton Trans., 2012,41:13132-13137. doi: 10.1039/c2dt30369h

    47. [47]

      A.Y.Y. Tam, K.M.C. Wong, G.X. Wang, V.W.W. Yam. Luminescent metallogels of platinum(II) terpyridyl complexes: interplay of metal…metal, π-π and hydrophobic-hydrophobic interactions on gel formation[J]. Chem. Commun., 2007,20:2028-2030.  

    48. [48]

      Y. Chen, W. Lu, C.M. Che. Luminescent pincer-type cyclometalated platinum(II) complexes with auxiliary isocyanide ligands: phase-transfer preparation, solvatomorphism, and self-aggregation[J]. Organometallics, 2013,32:350-353. doi: 10.1021/om300965b

    49. [49]

      Z. Al-Ahmady, K. Kostarelos. Chemical components for the design of temperatureresponsive vesicles as cancer therapeutics[J]. Chem. Rev., 2016,116:3883-3918. doi: 10.1021/acs.chemrev.5b00578

    50. [50]

      W. Lu, V.A.L. Roy, C.M. Che. Self-assembled nanostructures with tridentate cyclometalated platinum(II) complexes[J]. Chem. Commun., 2006,38:3972-3974.  

    51. [51]

      W. Lu, S.S.Y. Chui, K.M. Ng, C.M. Che. A submicrometer wire-to-wheel metamorphism of hybrid tridentate cyclometalated platinum(II) complexes[J]. Angew. Chem. Int. Ed., 2008,47:4568-4572. doi: 10.1002/(ISSN)1521-3773

    52. [52]

      G.T. Barclay, K. Constantopoulos, J. Matisons. Nanotubes self-assembled from amphiphilic molecules via helical intermediates[J]. Chem. Rev., 2014,114:10217-10291. doi: 10.1021/cr400085m

    53. [53]

      T.F.A. De Greef, M.M.J. Smulders, M. Wolffs. Supramolecular polymerization[J]. Chem. Rev., 2009,109:5687-5754. doi: 10.1021/cr900181u

    54. [54]

      S.Y. Dong, B. Zheng, F. Wang, F.H. Huang. Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs[J]. Acc. Chem. Res., 2014,47:1982-1994. doi: 10.1021/ar5000456

    55. [55]

      L.L. Yang, X.X. Tan, Z.Q. Wang, X. Zhang. Supramolecular polymers: historical development, preparation, characterization, and functions[J]. Chem. Rev., 2015,115:7196-7239. doi: 10.1021/cr500633b

    56. [56]

      J.F. Xu, L.H. Chen, X. Zhang. How to make weak noncovalent interactions stronger[J]. Chem. Eur. J., 2015,21:11938-11946. doi: 10.1002/chem.v21.34

    57. [57]

      X. Yan, F. Wang, B. Zheng, F. Huang. Stimuli-responsive supramolecular polymeric materials[J]. Chem. Soc. Rev., 2012,41:6042-6065. doi: 10.1039/c2cs35091b

    58. [58]

      P.F. Wei, X.Z. Yan, F.H. Huang. Supramolecular polymers constructed by orthogonal self-assembly based on host-guest and metal-ligand interactions[J]. Chem. Soc. Rev., 2015,44:815-832. doi: 10.1039/C4CS00327F

    59. [59]

      A. Das, S. Ghosh. Supramolecular assemblies by charge-transfer interactions between donor and acceptor chromophores[J]. Angew. Chem. Int. Ed., 2014,53:2038-2054. doi: 10.1002/anie.201307756

    60. [60]

      F.C.M. Leung, S.Y.L. Leung, C.Y.S. Chung, V.W.W. Yam. Metal-metal and π-π interactions directed end-to-end assembly of gold nanorods[J]. J. Am. Chem. Soc., 2016,138:2989-2992. doi: 10.1021/jacs.6b01382

    61. [61]

      M.S. Xu, T. Liang, M.M. Shi, H.Z. Chen. Graphene-like two-dimensional materials[J]. Chem. Rev., 2013,113:3766-3798. doi: 10.1021/cr300263a

    62. [62]

      Y.Y. Mao, K.Y. Liu, L.Y. Meng. Solvent induced helical aggregation in the self-assembly of cholesterol tailed platinum complexes[J]. Soft Matter, 2014,10:7615-7622. doi: 10.1039/C4SM01213E

    63. [63]

      W. Lu, Y. Chen, V.A.L. Roy, S.S.Y. Chui, C.M. Che. Supramolecular polymers and chromonic mesophases self-organized from phosphorescent cationic organoplatinum(II) complexes in water[J]. Angew. Chem. Int. Ed., 2009,48:7621-7625. doi: 10.1002/anie.v48:41

    64. [64]

      S.K. Ahn, R.M. Kasi, S.C. Kim, N. Sharma, Y.X. Zhou. Stimuli-responsive polymer gels[J]. Soft Matter, 2008,4:1151-1157. doi: 10.1039/b714376a

    65. [65]

      N. Komiya, T. Muraoka, M. Iida. Ultrasound-induced emission enhancement based on structure-dependent homo-and heterochiral aggregations of chiral binuclear platinum complexes[J]. J. Am. Chem. Soc., 2011,133:16054-16061. doi: 10.1021/ja2039369

    66. [66]

      H.L. Au-Yeung, S.Y.L. Leung, A.Y.Y. Tam, V.W.W. Yam. Transformable nanostructures of platinum-containing organosilane hybrids: non-covalent self-assembly of polyhedral oligomeric silsesquioxanes assisted by Pt…Pt and π-π stacking interactions of alkynylplatinum(II) terpyridine moieties[J]. J. Am. Chem. Soc., 2014,136:17910-17913. doi: 10.1021/ja510048b

  • 加载中
    1. [1]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    2. [2]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    3. [3]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    4. [4]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    5. [5]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    6. [6]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    7. [7]

      Chao ZhangAi-Feng LiuShihui LiFang-Yuan ChenJun-Tao ZhangFang-Xing ZengHui-Chuan FengPing WangWen-Chao GengChuan-Rui MaDong-Sheng Guo . A supramolecular formulation of icariin@sulfonatoazocalixarene for hypoxia-targeted osteoarthritis therapy. Chinese Chemical Letters, 2025, 36(1): 109752-. doi: 10.1016/j.cclet.2024.109752

    8. [8]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    9. [9]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    10. [10]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    11. [11]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    12. [12]

      Kang WeiJiayu LiWen ZhangBing YuanMing-De LiPingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055

    13. [13]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    14. [14]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    15. [15]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    16. [16]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    17. [17]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    18. [18]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    19. [19]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    20. [20]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

Metrics
  • PDF Downloads(2)
  • Abstract views(682)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return