Citation: Gao-Ling Yang, Hai-Zheng Zhong. Organometal halide perovskite quantum dots: synthesis, optical properties, and display applications[J]. Chinese Chemical Letters, ;2016, 27(8): 1124-1130. doi: 10.1016/j.cclet.2016.06.047 shu

Organometal halide perovskite quantum dots: synthesis, optical properties, and display applications

  • Corresponding author: Hai-Zheng Zhong, citations.hzzhong@bit.edu.cn
  • Received Date: 17 May 2016
    Revised Date: 7 June 2016
    Accepted Date: 21 June 2016
    Available Online: 11 August 2016

Figures(6)

  • In recent two years, organometal halide perovskites quantum dots are emerging as a new member of the nanocrystals family. From the chemical point of view, these perovskites quantum dots can be synthesized either by classical hot-injection technique for inorganic semiconductor quantum dots or the reprecipitation synthesis at room temperature for organic nanocrystals. From a physical point of view, the observed large exciton binding energy, well self-passivated surface, as well as the enhanced nonlinear properties have been of great interest for fundamental study. From the application point of view, these perovskites quantum dots exhibit high photoluminescence quantum yields, wide wavelength tunability and ultra-narrow band emissions, the combination of these superior optical properties and low cost fabrication makes them to be suitable candidates for display technology. In this short review, we introduce the synthesis, optical properties, the prototype light-emitting devices, and the current important research tasks of halide perovsktie quantum dots, with an emphasis on CH3NH3PbX3 (X=Cl, Br, I) quantum dots that developed in our group.
  • 加载中
    1. [1]

      A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009,131:6050-6051. doi: 10.1021/ja809598r

    2. [2]

      N.J. Jeon, J.H. Noh, Y.C. Kim. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nat. Mater., 2014,13:897-903. doi: 10.1038/nmat4014

    3. [3]

      N.J. Jeon, J.H. Noh, W.S. Yang. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015,517:476-480. doi: 10.1038/nature14133

    4. [4]

      M.A. Green, A. Ho-Baillie, H.J. Snaith. The emergence of perovskite solar cells[J]. Nat. Photon., 2014,8:506-514. doi: 10.1038/nphoton.2014.134

    5. [5]

      M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012,338:643-647. doi: 10.1126/science.1228604

    6. [6]

      B.R. Sutherland, E.H. Sargent. Perovskite photonic sources[J]. Nat. Photon., 2016,10:295-302. doi: 10.1038/nphoton.2016.62

    7. [7]

      G.C. Xing, N. Mathews, S.S. Lim. Low-temperature solution-processed wavelength-tunable perovskites for lasing[J]. Nat. Mater., 2014,13:476-480. doi: 10.1038/nmat3911

    8. [8]

      F. Deschler, M. Price, S. Pathak. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors[J]. J. Phys. Chem. Lett., 2014,5:1421-1426. doi: 10.1021/jz5005285

    9. [9]

      H. Cho, S.H. Jeong, M.H. Park. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes[J]. Science, 2015,350:1222-1225. doi: 10.1126/science.aad1818

    10. [10]

      S.D. Stranks, H.J. Snaith. Metal-halide perovskites for photovoltaic and lightemitting devices[J]. Nat. Nanotechnol., 2015,10:391-402. doi: 10.1038/nnano.2015.90

    11. [11]

      Z.K. Tan, R.S. Moghaddam, M.L. Lai. Bright light-emitting diodes based on organometal halide perovskite[J]. Nat. Nanotechnol., 2014,9:687-692. doi: 10.1038/nnano.2014.149

    12. [12]

      Y.W. Niu, F. Zhang, Z.L. Bai. Aggregation-induced emission features of organometal halide perovskites and their fluorescence probe applications[J]. Adv. Opt. Mater., 2015,3:112-119. doi: 10.1002/adom.v3.1

    13. [13]

      J.N. Chen, S.S. Zhou, S.Y. Jin, H.Q. Li, T.Y. Zhai. Crystal organometal halide perovskites with promising optoelectronic applications[J]. J. Mater. Chem. C, 2016,4:11-27. doi: 10.1039/C5TC03417E

    14. [14]

      S.D. Stranks, V.M. Burlakov, T. Leijtens. Recombination kinetics in organicinorganic perovskites: excitons, free charge, and subgap states[J]. Phys. Rev. Appl., 2014,2034007. doi: 10.1103/PhysRevApplied.2.034007

    15. [15]

      A. Sadhanala, F. Deschler, T.H. Thomas. Preparation of single-phase films of CH3NH3Pb (I1-xBrx)3 with sharp optical band edges[J]. J. Phys. Chem. Lett., 2014,5:2501-2505. doi: 10.1021/jz501332v

    16. [16]

      M.G. Bawendi, M.L. Steigerwald, L.E. Brus. The quantum mechanics of larger semiconductor clusters ("quantum dots")[J]. Annu. Rev. Phys. Chem., 1990,41:477-496. doi: 10.1146/annurev.pc.41.100190.002401

    17. [17]

      M. Nirmal, L. Brus. Luminescence photophysics in semiconductor nanocrystals[J]. Acc. Chem. Res., 1999,32:407-414. doi: 10.1021/ar9700320

    18. [18]

      A.P. Alivisatos. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996,271:933-937. doi: 10.1126/science.271.5251.933

    19. [19]

      X.G. Peng, L. Manna, W.D. Yang. Shape control of CdSe nanocrystals[J]. Nature, 2000,404:59-61. doi: 10.1038/35003535

    20. [20]

      G.D. Scholes, G. Rumbles. Excitons in nanoscale systems[J]. Nat. Mater., 2006,5:683-696. doi: 10.1038/nmat1710

    21. [21]

      G.D. Scholes. Controlling the optical properties of inorganic nanoparticles[J]. Adv. Funct. Mater., 2008,18:1157-1172. doi: 10.1002/adfm.200800151

    22. [22]

      D.V. Talapin, J.S. Lee, M.V. Kovalenko, E.V. Shevchenko. Prospects of colloidal nanocrystals for electronic and optoelectronic applications[J]. Chem. Rev., 2009,110:389-458.  

    23. [23]

      J.A. Sichert, Y. Tong, N. Mutz. Quantum size effect in organometal halide perovskite nanoplatelets[J]. Nano Lett., 2015,15:6521-6527. doi: 10.1021/acs.nanolett.5b02985

    24. [24]

      Y.C. Ling, Z. Yuan, Y. Tian. Bright Light-emitting diodes based on organometal halide perovskite nanoplatelets[J]. Adv. Mater., 2016,28:305-311. doi: 10.1002/adma.v28.2

    25. [25]

      A.B. Wong, M.L. Lai, S.W. Eaton. Growth and anion exchange conversion of CH3NH3PbX3 nanorod arrays for light-emitting diodes[J]. Nano Lett., 2015,15:5519-5524. doi: 10.1021/acs.nanolett.5b02082

    26. [26]

      P. Tyagi, S.M. Arveson, W.A. Tisdale. Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement[J]. J. Phys. Chem. Lett., 2015,6:1911-1916. doi: 10.1021/acs.jpclett.5b00664

    27. [27]

      L.T. Dou, A.B. Wong, Y. Yu. Atomically thin two-dimensional organic-inorganic hybrid perovskites[J]. Science, 2015,349:1518-1521. doi: 10.1126/science.aac7660

    28. [28]

      S. Aharon, L. Etgar. Two dimensional organometal halide perovskite nanorods with tunable optical properties[J]. Nano Lett., 2016,16:3230-3235. doi: 10.1021/acs.nanolett.6b00665

    29. [29]

      S. Bai, Z.C. Yuan, F. Gao. Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications[J]. J. Mater. Chem. C, 2016,4:3898-3904. doi: 10.1039/C5TC04116C

    30. [30]

      Z.L. Bai, H.Z. Zhong. Halide perovskite quantum dots: potential candidates for display technology[J]. Sci. Bull., 2015,60:1622-1624. doi: 10.1007/s11434-015-0884-y

    31. [31]

      B.K. Chen, H.Z. Zhong, W.Q. Zhang. Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance[J]. Adv. Funct. Mater., 2012,22:2081-2088. doi: 10.1002/adfm.201102496

    32. [32]

      H.Z. Zhong, Z.L. Bai, B.S. Zou. Tuning the luminescence properties of colloidal I-III-VI semiconductor nanocrystals for optoelectronics and biotechnology applications[J]. J. Phys. Chem. Lett., 2012,3:3167-3175. doi: 10.1021/jz301345x

    33. [33]

      B.K. Chen, H.Z. Zhong, M.X. Wang, R.B. Liu, B.S. Zou. Integration of CuInS2-based nanocrystals for high efficiency and high colour rendering white light-emitting diodes[J]. Nanoscale, 2013,5:3514-3519. doi: 10.1039/c3nr33613a

    34. [34]

      Z.L. Bai, W.Y. Ji, D.B. Han. Hydroxyl-terminated CuInS2 based quantum dots: toward efficient and bright light emitting diodes[J]. Chem. Mater., 2016,28:1085-1091. doi: 10.1021/acs.chemmater.5b04480

    35. [35]

      B.K. Chen, Q.C. Zhou, J.F. Li. Red emissive CuInS2-based nanocrystals: a potential phosphor for warm white light-emitting diodes[J]. Opt. Express, 2013,21:10105-10110. doi: 10.1364/OE.21.010105

    36. [36]

      Q.C. Zhou, Z.L. Bai, L. Lu, H.Z. Xu. Remote phosphor technology for white LED applications:advances and prospects[J]. Chin. J. Opt., 2015,8:313-328. doi: 10.3788/co.

    37. [37]

      F. Zhang, H.Z. Zhong, C. Chen. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X=Br, I, Cl) quantum dots: potential alternatives for display technology[J]. ACS Nano, 2015,9:4533-4542. doi: 10.1021/acsnano.5b01154

    38. [38]

      H.L. Huang, F.C. Zhao, L.G. Liu. Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: an alternative route toward efficient light-emitting diodes[J]. ACS Appl. Mater. Interfaces, 2015,7:28128-28133. doi: 10.1021/acsami.5b10373

    39. [39]

      L. Etgar, P. Gao, Z.S. Xue. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells[J]. J. Am. Chem. Soc., 2012,134:17396-17399. doi: 10.1021/ja307789s

    40. [40]

      J. Burschka, N. Pellet, S.J. Moon. Sequential deposition as a route to highperformance perovskite-sensitized solar cells[J]. Nature, 2013,499:316-319. doi: 10.1038/nature12340

    41. [41]

      A. Kojima, M. Ikegami, K. Teshima, T. Miyasaka. Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media[J]. Chem. Lett., 2012,41:397-399. doi: 10.1246/cl.2012.397

    42. [42]

      G. Longo, A. Pertegás, L. Martínez-Sarti, M. Sessolo, H.J. Bolink. Highly luminescent perovskite-aluminum oxide composites[J]. J. Mater. Chem. C, 2015,3:11286-11289. doi: 10.1039/C5TC02447A

    43. [43]

      L.C. Schmidt, A. Pertegás, S. González-Carrero. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles[J]. J. Am. Chem. Soc., 2014,136:850-853. doi: 10.1021/ja4109209

    44. [44]

      S. Gonzalez-Carrero, R.E. Galian, J. Pérez-Prieto. Maximizing the emissive properties of CH3NH3PbBr3 perovskite nanoparticles[J]. J. Mater. Chem. A, 2015,3:9187-9193. doi: 10.1039/C4TA05878J

    45. [45]

      O. Vybornyi, S. Yakunin, M.V. Kovalenko. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals[J]. Nanoscale, 2016,8:6278-6283. doi: 10.1039/C5NR06890H

    46. [46]

      H. Huang, A.S. Susha, S.V. Kershaw, T.F. Hung, A.L. Rogach. Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature[J]. Adv. Sci., 2015,21500194. doi: 10.1002/advs.201500194

    47. [47]

      X.M. Li, Y. Wu, S.L. Zhang. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes[J]. Adv. Funct. Mater., 2016,26:2435-2445. doi: 10.1002/adfm.v26.15

    48. [48]

      S.B. Sun, D. Yuan, Y. Xu, A.F. Wang, Z.T. Deng. Ligand-mediated synthesis of shapecontrolled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature[J]. ACS Nano, 2016,10:3648-3657. doi: 10.1021/acsnano.5b08193

    49. [49]

      B.B. Luo, Y.C. Pu, S.A. Lindley. Highly luminescent and stable layered perovskite as the emitter for light emitting diodes[J]. Angew. Chem. Int. Ed., 2016,55:1-6. doi: 10.1002/anie.201510990

    50. [50]

      Y. Hassan, Y. Song, R.D. Pensack. Structure-tuned lead halide perovskite nanocrystals[J]. Adv. Mater., 2016,28:566-573. doi: 10.1002/adma.v28.3

    51. [51]

      G.L. Yang, Z.W. Ma, H.Z. Zhong. Probing exciton move and localization in solution-grown colloidal CdSexS1-x alloyed nanowires by temperature-and timeresolved spectroscopy[J]. J. Phys. Chem. C, 2015,119:22709-22717. doi: 10.1021/acs.jpcc.5b07198

    52. [52]

      K. Chen, A.J. Barker, F.L. Morgan, J.E. Halpert, J.M. Hodgkiss. Effect of carrier thermalization dynamics on light emission and amplification in organometal halide perovskites[J]. J. Phys. Chem. Lett., 2015,6:153-158. doi: 10.1021/jz502528c

    53. [53]

      G.C. Xing, B. Wu, S. Chen. Interfacial electron transfer barrier at compact TiO2/CH3NH3PbI3 heterojunction[J]. Small, 2015,11:3606-3613. doi: 10.1002/smll.201403719

    54. [54]

      B.B. Luo, Y.C. Pu, Y. Yang. Synthesis, optical properties, and exciton dynamics of organolead bromide perovskite nanocrystals[J]. J. Phys. Chem. C, 2015,119:26672-26682. doi: 10.1021/acs.jpcc.5b08537

    55. [55]

      K.B. Zheng, K. Žídek, M. Abdellah. Trap states and their dynamics in organometal halide perovskite nanoparticles and bulk crystals[J]. J. Phys. Chem. C, 2016,120:3077-3084. doi: 10.1021/acs.jpcc.6b00612

    56. [56]

      Z.Y. Zhang, H.Y. Wang, Y.X. Zhang. The role of trap-assisted recombination in luminescent properties of organometal halide CH3NH3PbBr3 perovskite films and quantum dots[J]. Sci. Rep., 2016,627286. doi: 10.1038/srep27286

    57. [57]

      X.Y. Wang, L.H. Qu, J.Y. Zhang, X.G. Peng, M. Xiao. Surface-related emission in highly luminescent CdSe quantum dots[J]. Nano Lett., 2003,3:1103-1106. doi: 10.1021/nl0342491

    58. [58]

      M. Zhang, H. Yu, M.Q. Lyu. Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr3-xClx films[J]. Chem. Commun., 2014,50:11727-11730. doi: 10.1039/C4CC04973J

    59. [59]

      H.J. Queisser, E.E. Haller. Defects in semiconductors: some fatal, some vital[J]. Science, 1998,281:945-950. doi: 10.1126/science.281.5379.945

    60. [60]

      M.Y. Gao, S. Kirstein, H. Möhwald. Strongly photoluminescent CdTe nanocrystals by proper surface modification[J]. J. Phys. Chem. B, 1998,102:8360-8363. doi: 10.1021/jp9823603

    61. [61]

      J. Yan, B. Zhang, Y.L. Chen. Improving the photoluminescence properties of perovskite CH3NH3PbBr3-xClx films by modulating organic cation and chlorine concentrations[J]. ACS Appl. Mater. Interfaces, 2016,8:12756-12763. doi: 10.1021/acsami.6b01303

    62. [62]

      Y. Wang, X.M. Li, X. Zhao. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals[J]. Nano Lett., 2016,16:448-453. doi: 10.1021/acs.nanolett.5b04110

    63. [63]

      W.G. Lu, C. Chen, D.B. Han. Nonlinear optical properties of colloidal CH3NH3PbBr3 and CsPbBr3 quantum dots: a comparison study using Z-scan technique[J]. Adv. Opt. Mater., 2016.

    64. [64]

      S.G.R. Bade, J.Q. Li, X. Shan. Fully printed halide perovskite light-emitting diodes with silver nanowire electrodes[J]. ACS Nano, 2016,10:1795-1801. doi: 10.1021/acsnano.5b07506

    65. [65]

      H.M. Zhu, Y.P. Fu, F. Meng. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors[J]. Nat. Mater., 2015,14:636-642. doi: 10.1038/nmat4271

    66. [66]

      R.L. Hoye, M.R. Chua, K.P. Musselman. Enhanced performance in fluorenefree organometal halide perovskite light-emitting diodes using tunable, low electron affinity oxide electron injectors[J]. Adv. Mater., 2015,27:1414-1419. doi: 10.1002/adma.201405044

    67. [67]

      S.A. Veldhuis, P.P. Boix, N. Yantara. Perovskite materials for light-emitting diodes and lasers[J]. Adv. Mater., 2016,32:6804-6834.  

    68. [68]

      S. Pathak, N. Sakai, F.W.R. Rivarola. Perovskite crystals for tunable white light emission[J]. Chem. Mater., 2015,27:8066-8075. doi: 10.1021/acs.chemmater.5b03769

    69. [69]

      G.R., Z.K., D.W., etal.. Efficient light-emittingdiodes based on nanocrystalline perovskite in a dielectric polymer matrix[J]. Nano Lett., 2015,15:2640-2644. doi: 10.1021/acs.nanolett.5b00235

    70. [70]

      W. Deng, X.Z. Xu, X.J. Zhang. Organometal halide perovskite quantum dot light-emitting diodes[J]. Adv. Funct. Mater., 2016,26:4797-4802. doi: 10.1002/adfm.v26.26

    71. [71]

      M.Y. Wei, W.H. Sun, Y. Liu. Highly luminescent and stable layered perovskite as the emitter for light emitting diodes,[J]. Phys. Status Solid A, 2016.  

    72. [72]

      J.Xing, F.Yan, Y.W.Zhao, etal.. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles[J]. ACS Nano, 2016,10:6623-6630. doi: 10.1021/acsnano.6b01540

    73. [73]

      L. Protesescu, S. Yakunin, M.I. Bodnarchuk. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Lett., 2015,15:3692-3696. doi: 10.1021/nl5048779

    74. [74]

      G. Nedelcu, L. Protesescu, S. Yakunin. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, I)[J]. Nano Lett., 2015,15:5635-5640. doi: 10.1021/acs.nanolett.5b02404

    75. [75]

      Q.A. Akkerman, V. D'Innocenzo, S. Accornero. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions[J]. J. Am. Chem. Soc., 2015,137:10276-10281. doi: 10.1021/jacs.5b05602

    76. [76]

      Y. Kim, E. Yassitepe, O. Voznyy. Efficient luminescence from perovskite quantum dot solids[J]. ACS Appl. Mater. Interfaces, 2015,7:25007-25013. doi: 10.1021/acsami.5b09084

    77. [77]

      X.Y. Zhang, H. Lin, H. Huang. Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer[J]. Nano Lett., 2016,16:1415-1420. doi: 10.1021/acs.nanolett.5b04959

    78. [78]

      H. Huang, B.K. Chen, Z.G. Wang. Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices[J]. Chem. Sci., 2016,7:5699-5703. doi: 10.1039/C6SC01758D

    79. [79]

      J.Z.Song, J.H., X.M.Li, etal.. Quantumdot light-emittingdiodes based oninorganic perovskite cesium lead halides (CsPbX3)[J]. Adv. Mater., 2015,27:7162-7167. doi: 10.1002/adma.201502567

    80. [80]

      Y.Q. Xu, Q. Chen, C.F. Zhang. Two-photon-pumped perovskite semiconductor nanocrystal lasers[J]. J. Am. Chem. Soc., 2016,138:3761-3768. doi: 10.1021/jacs.5b12662

    81. [81]

      S.Q. Huang, Z.C. Li, L. Kong. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in "waterless" toluene[J]. J. Am. Chem. Soc., 2016,138:5749-5752. doi: 10.1021/jacs.5b13101

  • 加载中
    1. [1]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    2. [2]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    3. [3]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212

    4. [4]

      Yuan LiuBoyang WangYaxin LiWeidong LiSiyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426

    5. [5]

      Rui ChengTingting ZhangXin HuangJian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763

    6. [6]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    7. [7]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    8. [8]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    9. [9]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    10. [10]

      Biao HuangTao TangFushou LiuShi-Hui ChenZhi-Ling ZhangMingxi ZhangRan Cui . Quantum dots boost large-view NIR-Ⅱ imaging with high fidelity for fluorescence-guided tumor surgery. Chinese Chemical Letters, 2024, 35(12): 109694-. doi: 10.1016/j.cclet.2024.109694

    11. [11]

      Bohan ZhangBingzhe WangGuichuan XingZikang TangSongnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358

    12. [12]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    13. [13]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    14. [14]

      Yan WangSi-Meng ZhaiPeng LuoXi-Yan DongJia-Yin WangZhen HanShuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493

    15. [15]

      Yanting YangGuorong WangKangjing LiWen YangJing ZhangJian ZhangShili LiXianming Zhang . Tuning up of chromism, luminescence in cadmium-viologen complexes through polymorphism strategy: Inkless erasable printing application. Chinese Chemical Letters, 2025, 36(1): 110123-. doi: 10.1016/j.cclet.2024.110123

    16. [16]

      Huanyu LiuGang YuRuoyao GuoHao QiJiayin ZhengTong JinZifeng ZhaoZuqiang BianZhiwei Liu . Direct identification of energy transfer mechanism in Ce-Mn system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296

    17. [17]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    18. [18]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    19. [19]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    20. [20]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

Metrics
  • PDF Downloads(13)
  • Abstract views(807)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return