Citation: Li Ma, Shan Wang, Xiao Feng, Bo Wang. Recent advances of covalent organic frameworks in electronic and optical applications[J]. Chinese Chemical Letters, ;2016, 27(8): 1383-1394. doi: 10.1016/j.cclet.2016.06.046 shu

Recent advances of covalent organic frameworks in electronic and optical applications

  • Corresponding author: Xiao Feng, materials.fengxiao86@bit.edu.cn
  • Received Date: 13 May 2016
    Revised Date: 8 June 2016
    Accepted Date: 21 June 2016
    Available Online: 11 August 2016

Figures(16)

  • Covalent organic frameworks (COFs) as an emerging class of porous materials have achieved remarkable progress in recent years. Their high surface area, low mass densities, highly ordered periodic structures, and ease of functionalization make COFs exhibit superior potential in gas storage and separation, optoelectronic device and catalysis. This mini review gives a brief introduction of COFs and highlights their applications in electronic and optical fields.
  • 加载中
    1. [1]

      A.P. Côte, A.I. Benin, N.W. Ockwig. Porous, crystalline, covalent organic frameworks[J]. Science, 2005,310:1166-1170. doi: 10.1126/science.1120411

    2. [2]

      (a) H.M. El-Kaderi, J.R. Hunt, J.L. Mendoza-Cortés, et al., Designed synthesis of 3D covalent organic frameworks, Science 316(2007) 268-272; (b) X. Feng, X.S. Ding, D.L. Jiang, Covalent organic frameworks, Chem. Soc. Rev. 41(2012) 6010-6022; (c) S.Y. Ding, W. Wang, Covalent organic frameworks (COFs): from design to applications, Chem. Soc. Rev. 42(2013) 548-568; (d) J.W. Colson, W.R. Dichtel, Rationally synthesized two-dimensional polymers, Nat. Chem. 5(2013) 453-465; (e) M. Dogru, T. Bein, On the road towards electroactive covalent organic frameworks, Chem. Commun. 50(2014) 5531-5546; (f) X.H. Liu, C.Z. Guan, D. Wang, L.J. Wan, Graphene-like single-layered covalent organic frameworks: synthesis strategies and application prospects, Adv. Mater. 26(2014) 6912-6920; (g) P.J. Waller, F. Gándara, O.M. Yaghi, Chemistry of covalent organic frameworks, Acc. Chem. Res. 48(2015) 3053-3063; (h) U. Díaz, A. Corma, Ordered covalent organic frameworks, COFs and PAFs. From preparation to application, Coordin. Chem. Rev. 311(2016) 85-124; (i) Y.F. Zeng, R.Q. Zou, Y.L. Zhao, Covalent organic frameworks for CO2 capture, Adv. Mater. 28(2016) 2855-2873. 

    3. [3]

      (a) H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science 341(2013) 1230444; (b) Y. Bai, Y.B. Dou, L.H. Xie, et al., Zr-based metal-organic frameworks: design, synthesis, structure, and applications, Chem. Soc. Rev. 45(2016) 2327-2367; (c) B. Wang, H. Yang, Y.B. Xie, et al., Controlling structural topology of metalorganic frameworks with a desymmetric 4-connected ligand through the design of metal-containing nodes, Chin. Chem. Lett. 27(2016) 502-506; (d) S. Kitagawa, R. Kitaura, S.I. Noro, Functional porous coordination polymers, Angew. Chem. Int. Ed. 43(2004) 2334-2375; (e) S. Kitagawa, K. Uemura, Dynamic porous properties of coordination polymers inspired by hydrogen bonds, Chem. Soc. Rev. 34(2005) 109; (f) D. Tian, X.J. Liu, R.Y. Chen, Y.H. Zhang, Syntheses, structures, luminescent and magnetic properties of two coordination polymers based on a flexible multidentate carboxylate ligand, Chin. Chem. Lett. 26(2015) 499-503. 

    4. [4]

      (a) N. Huang, X. Chen, R. Krishna, D.L. Jiang, Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization, Angew. Chem. Int. Ed. 54(2015) 2986-2990; (b) N. Huang, R. Krishna, D.L. Jiang, Tailor-made pore surface engineering in covalent organic frameworks: systematic functionalization forperformance screening, J. Am. Chem. Soc. 137(2015) 7079-7082; (c) C.J. Doonan, D.J. Tranchemontagne, T.G. Glover, J.R. Hunt, O.M. Yaghi, Exceptional ammonia uptake by a covalent organic framework, Nat. Chem. 2(2010) 235-238; (d) H. Furukawa, O.M. Yaghi, Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications, J. Am. Chem. Soc. 131(2009) 8875-8883; (e) J.R. Song, J.L. Sun, J.M. Liu, Z.T. Huang, Q.Y. Zheng, Thermally/hydrolytically stable covalent organic frameworks from a rigid macrocyclic host, Chem. Commun. 50(2014) 788-791; (f) Z.P. Li, X. Feng, Y.C. Zou, et al., A 2D azine-linked covalent organic framework for gas storage applications, Chem. Commun. 50(2014) 13825-13828; (g) Z.P. Li, Y.F. Zhi, X. Feng, et al., An azine-linked covalent organic framework: synthesis, characterization and efficient gas storage, Chem. Eur. J. 21(2015) 12079-12084; (h) H.P. Ma, H. Ren, S. Meng, et al., A 3D microporous covalent organic framework with exceedingly high C3H8/CH4 and C2 hydrocarbon/CH4 selectivity, Chem. Commun. 49(2013) 9773-9775; (i) H. Wei, S.Z. Chai, N.T. Hu, et al., The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity, Chem. Commun. 51(2015) 12178-12181. 

    5. [5]

      (a) S. Lin, C.S. Diercks, Y.B. Zhang, et al., Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water, Science 349(2015) 1208-1213; (b) S.Y. Ding, J. Gao, Q. Wang, et al., Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in suzuki-miyaura coupling reaction, J. Am. Chem. Soc. 133(2011) 19816-19822; (c) P. Pachfule, M.K. Panda, S. Kandambeth, et al., Multifunctional and robust covalent organic framework-nanoparticle hybrids, J. Mater. Chem. A 2(2014) 7944-7952; (d) Y. Wu, H. Xu, X. Chen, J. Gao, D.L. Jiang, A π-electronic covalent organic framework catalyst: π-walls as catalytic beds for diels-alder reactions under ambient conditions, Chem. Commun. 51(2015) 10096-10098; (e) Q.R. Fang, S. Gu, J. Zheng, et al., 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis, Angew. Chem. Int. Ed. 53(2014) 2878-2882; (f) V.S. Vyas, F. Haase, L. Stegbauer, et al., A tunable azine covalent organic framework platform for visible light-induced hydrogen generation, Nat. Commun. 6(2015) 8508; (g) H. Xu, J. Gao, D.L. Jiang, Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts, Nat. Chem. 7(2015) 905-912. 

    6. [6]

      (a) X.S. Ding, J. Guo, X. Feng, et al., Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity, Angew. Chem. Int. Ed. 50(2011) 1289-1293; (b) X.S. Ding, L. Chen, Y. Honsho, et al., An n-channel two-dimensional covalent organic framework, J. Am. Chem. Soc. 133(2011) 14510-14513; (c) X. Chen, M. Addicoat, E.Q. Jin, et al., Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity, J. Am. Chem. Soc. 137(2015) 3241-3247; (d) L. Chen, K. Furukawa, J. Gao, et al., Photoelectric covalent organic frameworks: converting open lattices into ordered donor-acceptor heterojunctions, J. Am. Chem. Soc. 136(2014) 9806-9809; (e) S.B. Jin, M. Supur, M. Addicoat, et al., Creation of superheterojunction polymers via direct polycondensation: segregated and bicontinuous donor-acceptor π-columnar arrays in covalent organic frameworks for long-lived charge separation, J. Am. Chem. Soc. 137(2015) 7817-7827; (f) S. Wan, F. Gándara, A. Asano, et al., Covalent organic frameworks with high charge carrier mobility, Chem. Mater. 23(2011) 4094-4097; (g) M. Dogru, M. Handloser, F. Auras, et al., A photoconductive thienothiophenebased covalent organic framework showing charge transfer towards included fullerene, Angew. Chem. Int. Ed. 52(2013) 2920-2924; (h) S. Chandra, T. Kundu, S. Kandambeth, et al., Phosphoric acid loaded Azo (-N5N-) based covalent organic framework for proton conduction, J. Am. Chem. Soc. 136(2014) 6570-6573. 

    7. [7]

      (a) F. Xu, H. Xu, X. Chen, et al., Radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage, Angew. Chem. Int. Ed. 54(2015) 6814-6818; (b) C.R. DeBlase, K.E. Silberstein, T.T. Truong, et al., β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage, J. Am. Chem. Soc. 135(2013) 16821-16824. 

    8. [8]

      Q.R. Fang, J.H. Wang, S. Gu. 3D porous crystalline polyimide covalent organic frameworks for drug delivery[J]. J. Am. Chem. Soc., 2015,137:8352-8355. doi: 10.1021/jacs.5b04147

    9. [9]

      B.P. Biswal, S. Kandambeth, S. Chandra. Pore surface engineering in porous, chemically stable covalent organic frameworks for water adsorption[J]. J. Mater. Chem. A, 2015,3:23664-23669. doi: 10.1039/C5TA07998E

    10. [10]

      S. Kandambeth, V. Venkatesh, D.B. Shinde. Self-templated chemically stable hollow spherical covalent organic framework[J]. Nat. Commun., 2015,66786. doi: 10.1038/ncomms7786

    11. [11]

      C.X. Yang, C. Liu, Y.M. Cao, X.P. Yan. Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation[J]. Chem. Commun., 2015,51:12254-12257. doi: 10.1039/C5CC03413B

    12. [12]

      S. Wan, J. Guo, J. Kim, H. Ihee, D.L. Jiang. A belt-shaped, blue luminescent, and semiconducting covalent organic framework[J]. Angew. Chem. Int. Ed., 2008,47:8826-8830. doi: 10.1002/anie.v47:46

    13. [13]

      S. Wan, J. Guo, J. Kim, H. Ihee, D.L. Jiang. A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation[J]. Angew. Chem. Int. Ed., 2009,48:5439-5442. doi: 10.1002/anie.v48:30

    14. [14]

      X. Feng, L.L. Liu, Y. Honsho. High-rate charge-carrier transport in porphyrin covalent organic frameworks: switching from hole to electron to ambipolar conduction[J]. Angew. Chem. Int. Ed., 2012,51:2618-2622. doi: 10.1002/anie.201106203

    15. [15]

      X.S. Ding, X. Feng, A. Saeki. Conducting metallophthalocyanine 2D covalent organic frameworks: the role of central metals in controlling π-electronic functions[J]. Chem. Commun., 2012,48:8952-8954. doi: 10.1039/c2cc33929c

    16. [16]

      X. Feng, L. Chen, Y. Honsho. An ambipolar conducting covalent organic framework with self-sorted and periodic electron donor-acceptor ordering[J]. Adv. Mater., 2012,24:3026-3031. doi: 10.1002/adma.v24.22

    17. [17]

      (a) S.B. Jin, X.S. Ding, X. Feng, et al., Charge dynamics in a donor-acceptor covalent organic framework with periodically ordered bicontinuous heterojunctions, Angew. Chem. Int. Ed. 52(2013) 2017-2021; (b) S.B. Jin, K. Furukawa, M. Addicoat, et al., Large pore donor-acceptor covalent organic frameworks, Chem. Sci. 4(2013) 4505-4511. 

    18. [18]

      J. Guo, Y.H. Xu, S.B. Jin. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds[J]. Nat. Commun., 2013,42736.  

    19. [19]

      S.L. Cai, Y.B. Zhang, A.B. Pun. Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework[J]. Chem. Sci., 2014,5:4693-4700. doi: 10.1039/C4SC02593H

    20. [20]

      D.D. Medina, V. Werner, F. Auras. Oriented thin films of a benzodithiophene covalent organic framework[J]. ACS Nano, 2014,8:4042-4052. doi: 10.1021/nn5000223

    21. [21]

      J.I. Feldblyum, C.H. McCreery, S.C. Andrews. Few-layer, large-area, 2D covalent organic framework semiconductor thin films[J]. Chem. Commun., 2015,51:13894-13897. doi: 10.1039/C5CC04679C

    22. [22]

      Y. Chen, H.J. Cui, J.Q. Zhang. Surface growth of highly oriented covalent organic framework thin film with enhanced photoresponse speed[J]. RSC Adv., 2015,5:92573-92576. doi: 10.1039/C5RA19430J

    23. [23]

      C.R. DeBlase, K. Hernández-Burgos, K.E. Silberstein. Rapid and efficient redox processes within 2D covalent organic framework thin films[J]. ACS Nano, 2015,9:3178-3183. doi: 10.1021/acsnano.5b00184

    24. [24]

      P.Y. Wang, Q. Wu, L.F. Han. Synthesis of conjugated covalent organic frameworks/graphene composite for supercapacitor electrodes[J]. RSC Adv., 2015,5:27290-27294. doi: 10.1039/C5RA02251G

    25. [25]

      F. Xu, S.B. Jin, H. Zhong. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage[J]. Sci. Rep., 2015,58225. doi: 10.1038/srep08225

    26. [26]

      H.P. Liao, H.M. Ding, B.J. Li, X.P. Ai, C. Wang. Covalent-organic frameworks: potential host materials for sulfur impregnation in lithium-sulfur batteries[J]. J. Mater. Chem. A, 2014,2:8854-8858. doi: 10.1039/c4ta00523f

    27. [27]

      X.F. Yang, B. Dong, H.Z. Zhang. Sulfur impregnated in a mesoporous covalent organic framework for high performance lithium-sulfur batteries[J]. RSC Adv., 2015,5:86137-86143. doi: 10.1039/C5RA16235A

    28. [28]

      S.N. Talapaneni, T.H. Hwang, S.H. Je. Elemental-sulfur-mediated facile synthesis of a covalent triazine framework for high-performance lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2016,55:3106-3111. doi: 10.1002/anie.201511553

    29. [29]

      Y. Du, H. Yang, J.M. Whiteley. Ionic covalent organic frameworks with spiroborate linkage[J]. Angew. Chem. Int. Ed., 2016,55:1737-1741. doi: 10.1002/anie.201509014

    30. [30]

      D.B. Shinde, H.B. Aiyappa, M. Bhadra. A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte[J]. J. Mater. Chem. A, 2016,4:2682-2690. doi: 10.1039/C5TA10521H

    31. [31]

      S. Chandra, T. Kundu, K. Dey. Interplaying intrinsic and extrinsic proton conductivities in covalent organic frameworks[J]. Chem. Mater., 2016,28:1489-1494. doi: 10.1021/acs.chemmater.5b04947

    32. [32]

      H. Xu, S.S. Tao, D.L. Jiang. Proton conduction in crystalline and porous covalent organic frameworks[J]. Nat. Mater., 2016.

    33. [33]

      H.P. Ma, B.L. Liu, B. Li. Cationic covalent organic frameworks: a simple platform of anionic exchange for porosity tuning and proton conduction[J]. J. Am. Chem. Soc., 2016,138:5897-5903. doi: 10.1021/jacs.5b13490

    34. [34]

      S. Dalapati, S.B. Jin, J. Gao. An azine-linked covalent organic framework[J]. J. Am. Chem. Soc., 2013,135:17310-17313. doi: 10.1021/ja4103293

    35. [35]

      A. Karmakar, A. Kumar, A.K. Chaudhari. Bimodal functionality in a porous covalent triazine framework by rational integration of an electron-rich and -deficient pore surface[J]. Chem. Eur. J., 2016,22:4931-4937. doi: 10.1002/chem.v22.14

    36. [36]

      G. Das, B.P. Biswal, S. Kandambeth. Chemical sensing in two dimensional porous covalent organic nanosheets[J]. Chem. Sci., 2015,6:3931-3939. doi: 10.1039/C5SC00512D

    37. [37]

      Q.R. Fang, Z.B. Zhuang, S. Gu. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks[J]. Nat. Commun., 2014,54503.  

    38. [38]

      Y.F. Xie, S.Y. Ding, J.M. Liu, W. Wang, Q.Y. Zheng. Triazatruxene based covalent organic framework and its quick-response fluorescence-on nature towards electron rich arenes[J]. J. Mater. Chem. C, 2015,3:10066-10069. doi: 10.1039/C5TC02256H

    39. [39]

      S.Y. Ding, M. Dong, Y.W. Wang. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II)[J]. J. Am. Chem. Soc., 2016,138:3031-3037. doi: 10.1021/jacs.5b10754

    40. [40]

      Z.P. Li, Y.W. Zhang, H. Xia, Y. Mu, X.M. Liu. A robust and luminescent covalent organic framework as a highly sensitive and selective sensor for the detection of Cu2+ ions[J]. Chem. Commun., 2016,52:6613-6616. doi: 10.1039/C6CC01476C

    41. [41]

      G.Q. Lin, H.M. Ding, D.Q. Yuan, B.S. Wang, C. Wang. A pyrene-based, fluorescent three-dimensional covalent organic framework[J]. J. Am. Chem. Soc., 2016,138:3302-3305. doi: 10.1021/jacs.6b00652

    42. [42]

      S. Dalapati, E.Q. Jin, M. Addicoat, T. Heine, D.L. Jiang. Highly emissive covalent organic frameworks[J]. J. Am. Chem. Soc., 2016,138:5797-5800. doi: 10.1021/jacs.6b02700

    43. [43]

      N. Huang, X.S. Ding, J. Kim, H. Ihee, D.L. Jiang. A photoresponsive smart covalent organic framework[J]. Angew. Chem. Int. Ed., 2015,54:8704-8707. doi: 10.1002/anie.201503902

    44. [44]

      N.A.A. Zwaneveld, R. Pawlak, M. Abel. Organized formation of 2D extended covalent organic frameworks at surfaces[J]. J. Am. Chem. Soc., 2008,130:6678-6679. doi: 10.1021/ja800906f

    45. [45]

      (a) J.W. Colson, A.R. Woll, A. Mukherjee, et al., Oriented 2D covalent organic framework thin films on single-layer graphene, Science 332(2011) 228-231; (b) E.L. Spitler, J.W. Colson, F.J. Uribe-Romo, et al., Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films, Angew. Chem. Int. Ed. 51(2012) 2623-2627; (c) E.L. Spitler, B.T. Koo, J.L. Novotney, et al., A 2D covalent organic framework with 4.7-nm pores and insight into its interlayer stacking, J. Am. Chem. Soc. 133(2011) 19416-19421; (d) J.W. Colson, J.A. Mann, C.R. DeBlase, W.R. Dichtel, Patterned growth of oriented 2D covalent organic framework thin films on single-layer graphene, J. Polym. Sci. Pol. Chem. 53(2015) 378-384; (e) L.R. Xu, X. Zhou, W.Q. Tian, et al., Surface-confined single-layer covalent organic framework on single-layer graphene grown on copper foil, Angew. Chem. Int. Ed. 53(2014) 9564-9568. 

    46. [46]

      (a) C.Z. Guan, D. Wang, L.J. Wan, Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation, Chem. Commun. 48(2012) 2943-2945; (b) W.L. Dong, L. Wang, H.M. Ding, et al., Substrate orientation effect in the onsurface synthesis of tetrathiafulvalene-integrated single-layer covalent organic frameworks, Langmuir 31(2015) 11755-11759. 

    47. [47]

      (a) I. Berlanga, M.L. Ruiz-González, J.M. Gonzaález-Calbet, et al., Delamination of layered covalent organic frameworks, Small 7(2011) 1207-1211; (b) D.N. Bunck, W.R. Dichtel, Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks, J. Am. Chem. Soc. 135(2013) 14952-14955; (c) S. Chandra, S. Kandambeth, B.P. Biswal, et al., Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination, J. Am. Chem. Soc. 135(2013) 17853-17861.

    48. [48]

      X.H. Liu, C.Z. Guan, S.Y. Ding. On-surface synthesis of single-layered twodimensional covalent organic frameworks via solid-vapor interface reactions[J]. J. Am. Chem. Soc., 2013,135:10470-10474. doi: 10.1021/ja403464h

    49. [49]

      D. Cui, J.M. MacLeod, M. Ebrahimi, D.F. Perepichka, F. Rosei. Solution and air stable host/guest architectures from a single layer covalent organic framework[J]. Chem. Commun., 2015,51:16510-16513. doi: 10.1039/C5CC07059G

    50. [50]

      W.Y. Dai, F. Shao, J. Szczerbiński. Synthesis of a two-dimensional covalent organic monolayer through dynamic imine chemistry at the air/water interface[J]. Angew. Chem. Int. Ed., 2016,55:213-217. doi: 10.1002/anie.201508473

    51. [51]

      X.H. Gou, Q. Zhang, Y.L. Wu. Preparation and engineering of oriented 2D covalent organic framework thin films[J]. RSC Adv., 2016,6:39198-39203. doi: 10.1039/C6RA07417K

    52. [52]

      X.H. Liu, Y.P. Mo, J.Y. Yue. Isomeric routes to schiff-base single-layered covalent organic frameworks[J]. Small, 2014,10:4934-4939. doi: 10.1002/smll.v10.23

  • 加载中
    1. [1]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    2. [2]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    3. [3]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    4. [4]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    5. [5]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    6. [6]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    7. [7]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    8. [8]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    9. [9]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    10. [10]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    11. [11]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    12. [12]

      Junhua WangXin LianXichuan CaoQiao ZhaoBaiyan LiXian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180

    13. [13]

      Jiahao LiGuinan ChenChunhong ChenYuanyuan LouZhihao XingTao ZhangChengtao GongYongwu Peng . Modulated synthesis of stoichiometric and sub-stoichiometric two-dimensional covalent organic frameworks for enhanced ethylene purification. Chinese Chemical Letters, 2025, 36(1): 109760-. doi: 10.1016/j.cclet.2024.109760

    14. [14]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    15. [15]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    16. [16]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    17. [17]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    18. [18]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    19. [19]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    20. [20]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

Metrics
  • PDF Downloads(39)
  • Abstract views(1791)
  • HTML views(144)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return