Recent advances of covalent organic frameworks in electronic and optical applications
- Corresponding author: Xiao Feng, materials.fengxiao86@bit.edu.cn
Citation:
Li Ma, Shan Wang, Xiao Feng, Bo Wang. Recent advances of covalent organic frameworks in electronic and optical applications[J]. Chinese Chemical Letters,
;2016, 27(8): 1383-1394.
doi:
10.1016/j.cclet.2016.06.046
A.P. Côte, A.I. Benin, N.W. Ockwig. Porous, crystalline, covalent organic frameworks[J]. Science, 2005,310:1166-1170. doi: 10.1126/science.1120411
(a) H.M. El-Kaderi, J.R. Hunt, J.L. Mendoza-Cortés, et al., Designed synthesis of 3D covalent organic frameworks, Science 316(2007) 268-272; (b) X. Feng, X.S. Ding, D.L. Jiang, Covalent organic frameworks, Chem. Soc. Rev. 41(2012) 6010-6022; (c) S.Y. Ding, W. Wang, Covalent organic frameworks (COFs): from design to applications, Chem. Soc. Rev. 42(2013) 548-568; (d) J.W. Colson, W.R. Dichtel, Rationally synthesized two-dimensional polymers, Nat. Chem. 5(2013) 453-465; (e) M. Dogru, T. Bein, On the road towards electroactive covalent organic frameworks, Chem. Commun. 50(2014) 5531-5546; (f) X.H. Liu, C.Z. Guan, D. Wang, L.J. Wan, Graphene-like single-layered covalent organic frameworks: synthesis strategies and application prospects, Adv. Mater. 26(2014) 6912-6920; (g) P.J. Waller, F. Gándara, O.M. Yaghi, Chemistry of covalent organic frameworks, Acc. Chem. Res. 48(2015) 3053-3063; (h) U. Díaz, A. Corma, Ordered covalent organic frameworks, COFs and PAFs. From preparation to application, Coordin. Chem. Rev. 311(2016) 85-124; (i) Y.F. Zeng, R.Q. Zou, Y.L. Zhao, Covalent organic frameworks for CO2 capture, Adv. Mater. 28(2016) 2855-2873.
(a) H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science 341(2013) 1230444; (b) Y. Bai, Y.B. Dou, L.H. Xie, et al., Zr-based metal-organic frameworks: design, synthesis, structure, and applications, Chem. Soc. Rev. 45(2016) 2327-2367; (c) B. Wang, H. Yang, Y.B. Xie, et al., Controlling structural topology of metalorganic frameworks with a desymmetric 4-connected ligand through the design of metal-containing nodes, Chin. Chem. Lett. 27(2016) 502-506; (d) S. Kitagawa, R. Kitaura, S.I. Noro, Functional porous coordination polymers, Angew. Chem. Int. Ed. 43(2004) 2334-2375; (e) S. Kitagawa, K. Uemura, Dynamic porous properties of coordination polymers inspired by hydrogen bonds, Chem. Soc. Rev. 34(2005) 109; (f) D. Tian, X.J. Liu, R.Y. Chen, Y.H. Zhang, Syntheses, structures, luminescent and magnetic properties of two coordination polymers based on a flexible multidentate carboxylate ligand, Chin. Chem. Lett. 26(2015) 499-503.
(a) N. Huang, X. Chen, R. Krishna, D.L. Jiang, Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization, Angew. Chem. Int. Ed. 54(2015) 2986-2990; (b) N. Huang, R. Krishna, D.L. Jiang, Tailor-made pore surface engineering in covalent organic frameworks: systematic functionalization forperformance screening, J. Am. Chem. Soc. 137(2015) 7079-7082; (c) C.J. Doonan, D.J. Tranchemontagne, T.G. Glover, J.R. Hunt, O.M. Yaghi, Exceptional ammonia uptake by a covalent organic framework, Nat. Chem. 2(2010) 235-238; (d) H. Furukawa, O.M. Yaghi, Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications, J. Am. Chem. Soc. 131(2009) 8875-8883; (e) J.R. Song, J.L. Sun, J.M. Liu, Z.T. Huang, Q.Y. Zheng, Thermally/hydrolytically stable covalent organic frameworks from a rigid macrocyclic host, Chem. Commun. 50(2014) 788-791; (f) Z.P. Li, X. Feng, Y.C. Zou, et al., A 2D azine-linked covalent organic framework for gas storage applications, Chem. Commun. 50(2014) 13825-13828; (g) Z.P. Li, Y.F. Zhi, X. Feng, et al., An azine-linked covalent organic framework: synthesis, characterization and efficient gas storage, Chem. Eur. J. 21(2015) 12079-12084; (h) H.P. Ma, H. Ren, S. Meng, et al., A 3D microporous covalent organic framework with exceedingly high C3H8/CH4 and C2 hydrocarbon/CH4 selectivity, Chem. Commun. 49(2013) 9773-9775; (i) H. Wei, S.Z. Chai, N.T. Hu, et al., The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity, Chem. Commun. 51(2015) 12178-12181.
(a) S. Lin, C.S. Diercks, Y.B. Zhang, et al., Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water, Science 349(2015) 1208-1213; (b) S.Y. Ding, J. Gao, Q. Wang, et al., Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in suzuki-miyaura coupling reaction, J. Am. Chem. Soc. 133(2011) 19816-19822; (c) P. Pachfule, M.K. Panda, S. Kandambeth, et al., Multifunctional and robust covalent organic framework-nanoparticle hybrids, J. Mater. Chem. A 2(2014) 7944-7952; (d) Y. Wu, H. Xu, X. Chen, J. Gao, D.L. Jiang, A π-electronic covalent organic framework catalyst: π-walls as catalytic beds for diels-alder reactions under ambient conditions, Chem. Commun. 51(2015) 10096-10098; (e) Q.R. Fang, S. Gu, J. Zheng, et al., 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis, Angew. Chem. Int. Ed. 53(2014) 2878-2882; (f) V.S. Vyas, F. Haase, L. Stegbauer, et al., A tunable azine covalent organic framework platform for visible light-induced hydrogen generation, Nat. Commun. 6(2015) 8508; (g) H. Xu, J. Gao, D.L. Jiang, Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts, Nat. Chem. 7(2015) 905-912.
(a) X.S. Ding, J. Guo, X. Feng, et al., Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity, Angew. Chem. Int. Ed. 50(2011) 1289-1293; (b) X.S. Ding, L. Chen, Y. Honsho, et al., An n-channel two-dimensional covalent organic framework, J. Am. Chem. Soc. 133(2011) 14510-14513; (c) X. Chen, M. Addicoat, E.Q. Jin, et al., Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity, J. Am. Chem. Soc. 137(2015) 3241-3247; (d) L. Chen, K. Furukawa, J. Gao, et al., Photoelectric covalent organic frameworks: converting open lattices into ordered donor-acceptor heterojunctions, J. Am. Chem. Soc. 136(2014) 9806-9809; (e) S.B. Jin, M. Supur, M. Addicoat, et al., Creation of superheterojunction polymers via direct polycondensation: segregated and bicontinuous donor-acceptor π-columnar arrays in covalent organic frameworks for long-lived charge separation, J. Am. Chem. Soc. 137(2015) 7817-7827; (f) S. Wan, F. Gándara, A. Asano, et al., Covalent organic frameworks with high charge carrier mobility, Chem. Mater. 23(2011) 4094-4097; (g) M. Dogru, M. Handloser, F. Auras, et al., A photoconductive thienothiophenebased covalent organic framework showing charge transfer towards included fullerene, Angew. Chem. Int. Ed. 52(2013) 2920-2924; (h) S. Chandra, T. Kundu, S. Kandambeth, et al., Phosphoric acid loaded Azo (-N5N-) based covalent organic framework for proton conduction, J. Am. Chem. Soc. 136(2014) 6570-6573.
(a) F. Xu, H. Xu, X. Chen, et al., Radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage, Angew. Chem. Int. Ed. 54(2015) 6814-6818; (b) C.R. DeBlase, K.E. Silberstein, T.T. Truong, et al., β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage, J. Am. Chem. Soc. 135(2013) 16821-16824.
Q.R. Fang, J.H. Wang, S. Gu. 3D porous crystalline polyimide covalent organic frameworks for drug delivery[J]. J. Am. Chem. Soc., 2015,137:8352-8355. doi: 10.1021/jacs.5b04147
B.P. Biswal, S. Kandambeth, S. Chandra. Pore surface engineering in porous, chemically stable covalent organic frameworks for water adsorption[J]. J. Mater. Chem. A, 2015,3:23664-23669. doi: 10.1039/C5TA07998E
S. Kandambeth, V. Venkatesh, D.B. Shinde. Self-templated chemically stable hollow spherical covalent organic framework[J]. Nat. Commun., 2015,66786. doi: 10.1038/ncomms7786
C.X. Yang, C. Liu, Y.M. Cao, X.P. Yan. Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation[J]. Chem. Commun., 2015,51:12254-12257. doi: 10.1039/C5CC03413B
S. Wan, J. Guo, J. Kim, H. Ihee, D.L. Jiang. A belt-shaped, blue luminescent, and semiconducting covalent organic framework[J]. Angew. Chem. Int. Ed., 2008,47:8826-8830. doi: 10.1002/anie.v47:46
S. Wan, J. Guo, J. Kim, H. Ihee, D.L. Jiang. A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation[J]. Angew. Chem. Int. Ed., 2009,48:5439-5442. doi: 10.1002/anie.v48:30
X. Feng, L.L. Liu, Y. Honsho. High-rate charge-carrier transport in porphyrin covalent organic frameworks: switching from hole to electron to ambipolar conduction[J]. Angew. Chem. Int. Ed., 2012,51:2618-2622. doi: 10.1002/anie.201106203
X.S. Ding, X. Feng, A. Saeki. Conducting metallophthalocyanine 2D covalent organic frameworks: the role of central metals in controlling π-electronic functions[J]. Chem. Commun., 2012,48:8952-8954. doi: 10.1039/c2cc33929c
X. Feng, L. Chen, Y. Honsho. An ambipolar conducting covalent organic framework with self-sorted and periodic electron donor-acceptor ordering[J]. Adv. Mater., 2012,24:3026-3031. doi: 10.1002/adma.v24.22
(a) S.B. Jin, X.S. Ding, X. Feng, et al., Charge dynamics in a donor-acceptor covalent organic framework with periodically ordered bicontinuous heterojunctions, Angew. Chem. Int. Ed. 52(2013) 2017-2021; (b) S.B. Jin, K. Furukawa, M. Addicoat, et al., Large pore donor-acceptor covalent organic frameworks, Chem. Sci. 4(2013) 4505-4511.
J. Guo, Y.H. Xu, S.B. Jin. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds[J]. Nat. Commun., 2013,42736.
S.L. Cai, Y.B. Zhang, A.B. Pun. Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework[J]. Chem. Sci., 2014,5:4693-4700. doi: 10.1039/C4SC02593H
D.D. Medina, V. Werner, F. Auras. Oriented thin films of a benzodithiophene covalent organic framework[J]. ACS Nano, 2014,8:4042-4052. doi: 10.1021/nn5000223
J.I. Feldblyum, C.H. McCreery, S.C. Andrews. Few-layer, large-area, 2D covalent organic framework semiconductor thin films[J]. Chem. Commun., 2015,51:13894-13897. doi: 10.1039/C5CC04679C
Y. Chen, H.J. Cui, J.Q. Zhang. Surface growth of highly oriented covalent organic framework thin film with enhanced photoresponse speed[J]. RSC Adv., 2015,5:92573-92576. doi: 10.1039/C5RA19430J
C.R. DeBlase, K. Hernández-Burgos, K.E. Silberstein. Rapid and efficient redox processes within 2D covalent organic framework thin films[J]. ACS Nano, 2015,9:3178-3183. doi: 10.1021/acsnano.5b00184
P.Y. Wang, Q. Wu, L.F. Han. Synthesis of conjugated covalent organic frameworks/graphene composite for supercapacitor electrodes[J]. RSC Adv., 2015,5:27290-27294. doi: 10.1039/C5RA02251G
F. Xu, S.B. Jin, H. Zhong. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage[J]. Sci. Rep., 2015,58225. doi: 10.1038/srep08225
H.P. Liao, H.M. Ding, B.J. Li, X.P. Ai, C. Wang. Covalent-organic frameworks: potential host materials for sulfur impregnation in lithium-sulfur batteries[J]. J. Mater. Chem. A, 2014,2:8854-8858. doi: 10.1039/c4ta00523f
X.F. Yang, B. Dong, H.Z. Zhang. Sulfur impregnated in a mesoporous covalent organic framework for high performance lithium-sulfur batteries[J]. RSC Adv., 2015,5:86137-86143. doi: 10.1039/C5RA16235A
S.N. Talapaneni, T.H. Hwang, S.H. Je. Elemental-sulfur-mediated facile synthesis of a covalent triazine framework for high-performance lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2016,55:3106-3111. doi: 10.1002/anie.201511553
Y. Du, H. Yang, J.M. Whiteley. Ionic covalent organic frameworks with spiroborate linkage[J]. Angew. Chem. Int. Ed., 2016,55:1737-1741. doi: 10.1002/anie.201509014
D.B. Shinde, H.B. Aiyappa, M. Bhadra. A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte[J]. J. Mater. Chem. A, 2016,4:2682-2690. doi: 10.1039/C5TA10521H
S. Chandra, T. Kundu, K. Dey. Interplaying intrinsic and extrinsic proton conductivities in covalent organic frameworks[J]. Chem. Mater., 2016,28:1489-1494. doi: 10.1021/acs.chemmater.5b04947
H. Xu, S.S. Tao, D.L. Jiang. Proton conduction in crystalline and porous covalent organic frameworks[J]. Nat. Mater., 2016.
H.P. Ma, B.L. Liu, B. Li. Cationic covalent organic frameworks: a simple platform of anionic exchange for porosity tuning and proton conduction[J]. J. Am. Chem. Soc., 2016,138:5897-5903. doi: 10.1021/jacs.5b13490
S. Dalapati, S.B. Jin, J. Gao. An azine-linked covalent organic framework[J]. J. Am. Chem. Soc., 2013,135:17310-17313. doi: 10.1021/ja4103293
A. Karmakar, A. Kumar, A.K. Chaudhari. Bimodal functionality in a porous covalent triazine framework by rational integration of an electron-rich and -deficient pore surface[J]. Chem. Eur. J., 2016,22:4931-4937. doi: 10.1002/chem.v22.14
G. Das, B.P. Biswal, S. Kandambeth. Chemical sensing in two dimensional porous covalent organic nanosheets[J]. Chem. Sci., 2015,6:3931-3939. doi: 10.1039/C5SC00512D
Q.R. Fang, Z.B. Zhuang, S. Gu. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks[J]. Nat. Commun., 2014,54503.
Y.F. Xie, S.Y. Ding, J.M. Liu, W. Wang, Q.Y. Zheng. Triazatruxene based covalent organic framework and its quick-response fluorescence-on nature towards electron rich arenes[J]. J. Mater. Chem. C, 2015,3:10066-10069. doi: 10.1039/C5TC02256H
S.Y. Ding, M. Dong, Y.W. Wang. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II)[J]. J. Am. Chem. Soc., 2016,138:3031-3037. doi: 10.1021/jacs.5b10754
Z.P. Li, Y.W. Zhang, H. Xia, Y. Mu, X.M. Liu. A robust and luminescent covalent organic framework as a highly sensitive and selective sensor for the detection of Cu2+ ions[J]. Chem. Commun., 2016,52:6613-6616. doi: 10.1039/C6CC01476C
G.Q. Lin, H.M. Ding, D.Q. Yuan, B.S. Wang, C. Wang. A pyrene-based, fluorescent three-dimensional covalent organic framework[J]. J. Am. Chem. Soc., 2016,138:3302-3305. doi: 10.1021/jacs.6b00652
S. Dalapati, E.Q. Jin, M. Addicoat, T. Heine, D.L. Jiang. Highly emissive covalent organic frameworks[J]. J. Am. Chem. Soc., 2016,138:5797-5800. doi: 10.1021/jacs.6b02700
N. Huang, X.S. Ding, J. Kim, H. Ihee, D.L. Jiang. A photoresponsive smart covalent organic framework[J]. Angew. Chem. Int. Ed., 2015,54:8704-8707. doi: 10.1002/anie.201503902
N.A.A. Zwaneveld, R. Pawlak, M. Abel. Organized formation of 2D extended covalent organic frameworks at surfaces[J]. J. Am. Chem. Soc., 2008,130:6678-6679. doi: 10.1021/ja800906f
(a) J.W. Colson, A.R. Woll, A. Mukherjee, et al., Oriented 2D covalent organic framework thin films on single-layer graphene, Science 332(2011) 228-231; (b) E.L. Spitler, J.W. Colson, F.J. Uribe-Romo, et al., Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films, Angew. Chem. Int. Ed. 51(2012) 2623-2627; (c) E.L. Spitler, B.T. Koo, J.L. Novotney, et al., A 2D covalent organic framework with 4.7-nm pores and insight into its interlayer stacking, J. Am. Chem. Soc. 133(2011) 19416-19421; (d) J.W. Colson, J.A. Mann, C.R. DeBlase, W.R. Dichtel, Patterned growth of oriented 2D covalent organic framework thin films on single-layer graphene, J. Polym. Sci. Pol. Chem. 53(2015) 378-384; (e) L.R. Xu, X. Zhou, W.Q. Tian, et al., Surface-confined single-layer covalent organic framework on single-layer graphene grown on copper foil, Angew. Chem. Int. Ed. 53(2014) 9564-9568.
(a) C.Z. Guan, D. Wang, L.J. Wan, Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation, Chem. Commun. 48(2012) 2943-2945; (b) W.L. Dong, L. Wang, H.M. Ding, et al., Substrate orientation effect in the onsurface synthesis of tetrathiafulvalene-integrated single-layer covalent organic frameworks, Langmuir 31(2015) 11755-11759.
(a) I. Berlanga, M.L. Ruiz-González, J.M. Gonzaález-Calbet, et al., Delamination of layered covalent organic frameworks, Small 7(2011) 1207-1211; (b) D.N. Bunck, W.R. Dichtel, Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks, J. Am. Chem. Soc. 135(2013) 14952-14955; (c) S. Chandra, S. Kandambeth, B.P. Biswal, et al., Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination, J. Am. Chem. Soc. 135(2013) 17853-17861.
X.H. Liu, C.Z. Guan, S.Y. Ding. On-surface synthesis of single-layered twodimensional covalent organic frameworks via solid-vapor interface reactions[J]. J. Am. Chem. Soc., 2013,135:10470-10474. doi: 10.1021/ja403464h
D. Cui, J.M. MacLeod, M. Ebrahimi, D.F. Perepichka, F. Rosei. Solution and air stable host/guest architectures from a single layer covalent organic framework[J]. Chem. Commun., 2015,51:16510-16513. doi: 10.1039/C5CC07059G
W.Y. Dai, F. Shao, J. Szczerbiński. Synthesis of a two-dimensional covalent organic monolayer through dynamic imine chemistry at the air/water interface[J]. Angew. Chem. Int. Ed., 2016,55:213-217. doi: 10.1002/anie.201508473
X.H. Gou, Q. Zhang, Y.L. Wu. Preparation and engineering of oriented 2D covalent organic framework thin films[J]. RSC Adv., 2016,6:39198-39203. doi: 10.1039/C6RA07417K
X.H. Liu, Y.P. Mo, J.Y. Yue. Isomeric routes to schiff-base single-layered covalent organic frameworks[J]. Small, 2014,10:4934-4939. doi: 10.1002/smll.v10.23
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249
Guorong Li , Yijing Wu , Chao Zhong , Yixin Yang , Zian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Yunyu Zhao , Chuntao Yang , Yingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Fan Wu , Wenchang Tian , Jin Liu , Qiuting Zhang , YanHui Zhong , Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031
Yinyin Xu , Yuanyuan Li , Jingbo Feng , Chen Wang , Yan Zhang , Yukun Wang , Xiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838
Xinyi Cao , Yucheng Jin , Hailong Wang , Xu Ding , Xiaolin Liu , Baoqiu Yu , Xiaoning Zhan , Jianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201
Junhua Wang , Xin Lian , Xichuan Cao , Qiao Zhao , Baiyan Li , Xian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180
Jiahao Li , Guinan Chen , Chunhong Chen , Yuanyuan Lou , Zhihao Xing , Tao Zhang , Chengtao Gong , Yongwu Peng . Modulated synthesis of stoichiometric and sub-stoichiometric two-dimensional covalent organic frameworks for enhanced ethylene purification. Chinese Chemical Letters, 2025, 36(1): 109760-. doi: 10.1016/j.cclet.2024.109760
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
Shunshun Jiang , Ji Zhang , Jing Wang , Shan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955
Zhao-Xia Lian , Xue-Zhi Wang , Chuang-Wei Zhou , Jiayu Li , Ming-De Li , Xiao-Ping Zhou , Dan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063
Chao Liu , Chao Jia , Shi-Xian Gan , Qiao-Yan Qi , Guo-Fang Jiang , Xin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750
Lihua Ma , Song Guo , Zhi-Ming Zhang , Jin-Zhong Wang , Tong-Bu Lu , Xian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661
Xiaoyan Peng , Xuanhao Wu , Fan Yang , Yefei Tian , Mingming Zhang , Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251