Citation: Xiao-Feng Lin, Zi-Yan Zhang, Zhong-Ke Yuan, Jing Li, Xiao-Fen Xiao, Wei Hong, Xu-Dong Chen, Ding-Shan Yu. Graphene-based materials for polymer solar cells[J]. Chinese Chemical Letters, ;2016, 27(8): 1259-1270. doi: 10.1016/j.cclet.2016.06.041 shu

Graphene-based materials for polymer solar cells


  • Author Bio:






    Ding-Shan Yu received his PhD in Optical Engineering in 2008 from Sun Yat-Sen University (China). After post doctoral training at University of Dayton (USA), Case Western Reserve University (USA), and Nanyang Technological University (Singapore) for more than six years, he joined Sun Yat-Sen University as a professor in 2015. Dr. Yu's research interest includes design and synthesis of polymeric functional composites and carbon materials as well as their application in optoelectronic devices and energy storage and conversion system;Xu-Dong Chen is a professor in Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University (SYSU, China). His research interest includes design and synthesis of polymeric functional composites, organic/polymer optoelectronic devices and the application of plasmonic nanomaterials.
  • Corresponding author: Xu-Dong Chen, cescxd@mail.sysu.edu.cn Ding-Shan Yu, yudings@mail.sysu.edu.cn
  • Received Date: 3 May 2016
    Revised Date: 8 June 2016
    Accepted Date: 21 June 2016
    Available Online: 27 August 2016

Figures(17)

  • Due to the remarkable electronic, optical, thermal, and mechanical properties, graphene-based materials have shown great potential in a wide range of technique applications. Particularly, the high transparency, conductivity, flexibility, and abundance make graphene materials highly attractive for polymer solar cells (PSCs). Graphene-based materials have been regarded as one promising candidate used in various parts in PSCs not only as electrodes, but also as interfacial layers and active layers with an aim to boost the power conversion efficiency of the devices. In this review, we summarize the recent progress about the design and synthesis of graphene-based materials for efficient PSCs along with the related challenges and future perspectives.
  • 加载中
    1. [1]

      G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science, 1995,270:1789-1791. doi: 10.1126/science.270.5243.1789

    2. [2]

      J.Y. Kim, K. Lee, N.E. Coates. Efficient tandem polymer solar cells fabricated by all-solution processing[J]. Science, 2007,317:222-225. doi: 10.1126/science.1141711

    3. [3]

      G. Li, R. Zhu, Y. Yang. Polymer solar cells[J]. Nat. Photon., 2012,6:153-161. doi: 10.1038/nphoton.2012.11

    4. [4]

      J. Liu, M. Durstock, L.M. Dai. Graphene oxide derivatives as hole-and electronextraction layers for high-performance polymer solar cells[J]. Energy Environ. Sci., 2014,7:1297-1306. doi: 10.1039/C3EE42963F

    5. [5]

      M.T. Dang, L. Hirsch, G. Wantz, J.D. Wuest. Controlling the morphology and performance of bulk heterojunctions in solar cells. Lessons learned from the benchmark poly(3-hexylthiophene):[J]. Chem. Rev., 2013,113:3734-3765. doi: 10.1021/cr300005u

    6. [6]

      Y.H. Liu, J.B. Zhao, Z.K. Li. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells[J]. Nat. Commun., 2014,55293. doi: 10.1038/ncomms6293

    7. [7]

      B. Yang, Y.B. Yuan, P. Sharma. Tuning the energy level offset between donor and acceptor with ferroelectric dipole layers for increased efficiency in bilayer organic photovoltaic cells[J]. Adv. Mater., 2012,24:1455-1460. doi: 10.1002/adma.201104509

    8. [8]

      X.P Xu, Z.J Li, Z.G Wang. 10.20% efficiency polymer solar cells via employing bilaterally hole-cascade diazaphenanthrobisthiadiazole polymer donors and electron-cascade indene-C70 bisadduct acceptor[J]. Nano Energy, 2016,25:170-183. doi: 10.1016/j.nanoen.2016.04.048

    9. [9]

      K. Li, Z.J. Li, K. Feng. Development of large band-gap conjugated copolymers for efficient regular single and tandem organic solar cells[J]. J. Am. Chem. Soc., 2013,135:13549-13557. doi: 10.1021/ja406220a

    10. [10]

      S.K. Hau, H.L. Yip, A.K.Y. Jen. A review on the development of the inverted polymer solar cell architecture[J]. Polym. Rev, 2010,50:474-510. doi: 10.1080/15583724.2010.515764

    11. [11]

      Z.C. He, C.M. Zhong, S.J. Su. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure[J]. Nat. Photon., 2012,6:593-597. doi: 10.1038/nphoton.2012.190

    12. [12]

      J.B. You, C.C. Chen, L.T. Dou. Metal oxide nanoparticles as an electrontransport layer in high-performance and stable inverted polymer solar cells[J]. Adv. Mater., 2012,24:5267-5272. doi: 10.1002/adma.201201958

    13. [13]

      X.F. Lin, Y.Z. Yang, L. Nian. Interfacial modification layers based on carbon dots for efficient inverted polymer solar cells exceeding 10% power conversion efficiency[J]. Nano Energy, 2016,26:216-223. doi: 10.1016/j.nanoen.2016.05.011

    14. [14]

      J.B. You, L.T. Dou, K. Yoshimura. A polymer tandem solar cell with 10.6% power conversion efficiency[J]. Nat. Commu, 2013,4:1446-1455. doi: 10.1038/ncomms2411

    15. [15]

      A.K. Geim, K.S. Novoselov. The rise of graphene[J]. Nat. Mater., 2007,6:183-191. doi: 10.1038/nmat1849

    16. [16]

      D. Chen, H. Zhang, Y. Liu, J.H. Li. Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications[J]. Energy Environ. Sci., 2013,6:1362-1387. doi: 10.1039/c3ee23586f

    17. [17]

      D.W. Chang, H.J. Choi, A. Filer, J.B. Baek. Graphene in photovoltaic applications: organic photovoltaic cells (OPVs) and dye-sensitized solar cells (DSSCs)[J]. J. Mater. Chem. A, 2014,2:12136-12149. doi: 10.1039/C4TA01047G

    18. [18]

      Z.K. Liu, S.P. Lau, F. Yan. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing[J]. Chem. Soc. Rev., 2015,44:5638-5679. doi: 10.1039/C4CS00455H

    19. [19]

      L.T. Qu, Y. Liu, J.B. Baek, L.M. Dai. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. ACS Nano, 2010,4:1321-1326. doi: 10.1021/nn901850u

    20. [20]

      J.Y. Luo, W.J. Cui, P. He, Y.Y. Xia. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte[J]. Nat. Chem., 2010,2:760-765. doi: 10.1038/nchem.763

    21. [21]

      L.M. Dai. Functionalization of graphene for efficient energy conversion and storage[J]. Acc. Chem. Res., 2013,46:31-42. doi: 10.1021/ar300122m

    22. [22]

      D.S. Yu, K.L. Goh, H. Wang. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage[J]. Nat. Nanotechnol., 2014,9:555-562. doi: 10.1038/nnano.2014.93

    23. [23]

      D.S. Yu, Q. Qian, L. Wei. Emergence of fiber supercapacitors[J]. Chem. Soc. Rev., 2015,44:647-662. doi: 10.1039/C4CS00286E

    24. [24]

      V. Yong, J.M. Tour. Theoretical efficiency of nanostructured graphene-based photovoltaics[J]. Small, 2010,6:313-318. doi: 10.1002/smll.v6:2

    25. [25]

      J. Kim, V.C. Tung, J.X. Huang. Water processable graphene oxide: single walled carbon nanotube composite as anode modifier for polymer solar cells[J]. Adv. Energy Mater., 2011,1:1052-1057. doi: 10.1002/aenm.201100466

    26. [26]

      I.P. Murray, S.J. Lou, L.J. Cote. Graphene oxide interlayers for robust, highefficiency organic photovoltaics[J]. J. Phys. Chem. Lett., 2011,2:3006-3012. doi: 10.1021/jz201493d

    27. [27]

      D.H. Wang, J.K. Kim, J.H. Seo. Transferable graphene oxide by stamping nanotechnology: electron-transport layer for efficient bulk-heterojunction solar cells[J]. Angew. Chem. Int. Ed., 2013,52:2874-2880. doi: 10.1002/anie.201209999

    28. [28]

      J.C. Yu, J.I. Jang, B.R. Lee. Highly efficient polymer-based optoelectronic devices using PEDOT:PSS and a GO composite layer as a hole transport layer[J]. ACS Appl. Mater. Interfaces, 2014,6:2067-2073. doi: 10.1021/am4051487

    29. [29]

      A.R.B.M. Yusoff, S.J. Lee, F.K. Shneider, W.J. da Silva, J. Jang. High-performance semitransparent tandem solar cell of 8.02% conversion efficiency with solutionprocessed graphene mesh and laminated Ag nanowire top electrodes[J]. Adv. Energy Mater., 2014,4:3412-3420.  

    30. [30]

      Y.H. Chen, W.C. Lin, J. Liu, L.M. Dai. Graphene oxide-based carbon interconnecting layer for polymer tandem solar cells[J]. Nano Lett., 2014,14:1467-1471. doi: 10.1021/nl4046284

    31. [31]

      J.H. Du, S.F. Pei, L.P. Ma, H.M. Cheng. 25th anniversary article: carbon nanotubeand graphene-based transparent conductive films for optoelectronic devices[J]. Adv. Mater, 2014,26:1958-1991. doi: 10.1002/adma.201304135

    32. [32]

      Z.Y. Yin, S.Y. Sun, T. Salim. Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes[J]. ACS Nano, 2010,4:5263-5268. doi: 10.1021/nn1015874

    33. [33]

      Y.F. Xu, G.K. Long, L. Huang. Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting[J]. Carbon, 2010,48:3308-3311. doi: 10.1016/j.carbon.2010.05.017

    34. [34]

      Q. Zhang, X.J. Wan, F. Xing. Solution-processable graphene mesh transparent electrodes for organic solar cells[J]. Nano Res., 2013,6:478-484. doi: 10.1007/s12274-013-0325-7

    35. [35]

      Y.Y. Choi, S.J. Kang, H.K. Kim, W.M. Choi, S.I. Na. Multilayer graphene films as transparent electrodes for organic photovoltaic devices[J]. Sol. Energy Mater. Sol. Cells, 2012,96:281-285. doi: 10.1016/j.solmat.2011.09.031

    36. [36]

      Z.K. Liu, J.H. Li, Z.H. Sun. The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells[J]. ACS Nano, 2012,6:810-818. doi: 10.1021/nn204675r

    37. [37]

      Z.K. Liu, J.H. Li, F. Yan. Package-free flexible organic solar cells with graphene top electrodes[J]. Adv. Mater., 2013,25:4296-4301. doi: 10.1002/adma.v25.31

    38. [38]

      Z.K. Liu, P. You, S.H. Liu, F. Yan. Neutral-color semitransparent organic solar cells with all-graphene electrodes[J]. ACS Nano, 2015,9:12026-12034. doi: 10.1021/acsnano.5b04858

    39. [39]

      A.R.b.M. Yusoff, D. Kim, F.K. Schneider. Au-doped single layer graphene nanoribbons for a record-high efficiency ITO-Free tandem polymer solar cells[J]. Energy Environ. Sci., 2015,8:1523-1537. doi: 10.1039/C5EE00749F

    40. [40]

      H. Ma, H.L. Yip, F. Huang, A.K.Y. Jen. Interface engineering for organic electronics[J]. Adv. Funct. Mater., 2010,20:1371-1388. doi: 10.1002/adfm.200902236

    41. [41]

      M. Girtan, M. Rusu. Role of ITO and PEDOT:PSS in stability/degradation of polymer: fullerene bulk heterojunctions solar cells[J]. Sol. Energy Mater. Sol. Cells, 2010,94:446-450. doi: 10.1016/j.solmat.2009.10.026

    42. [42]

      M. Jørgensen, K. Norrman, F.C. Krebs. Stability/degradation of polymer solar cells[J]. Sol. Energy Mater. Sol. Cells, 2008,92:686-714. doi: 10.1016/j.solmat.2008.01.005

    43. [43]

      W.J.E. Beek, M.M. Wienk, M. Kemerink, X.N. Yang, R.A.J. Janssen. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells[J]. J. Phys. Chem. B., 2005,109:9505-9516. doi: 10.1021/jp050745x

    44. [44]

      A.K.K. Kyaw, D.H. Wang, V. Gupta. Efficient solution-processed smallmolecule solar cells with inverted structure[J]. Adv. Mater., 2013,25:2397-2402. doi: 10.1002/adma.v25.17

    45. [45]

      B.J. Moon, K.S. Lee, J. Shim. Enhanced photovoltaic performance of inverted polymer solar cells utilizing versatile chemically functionalized ZnO@graphene quantum dot monolayer[J]. Nano Energy, 2016,20:221-232. doi: 10.1016/j.nanoen.2015.11.039

    46. [46]

      E.S. Choi, Y.J. Jeon, S.S. Kim. Metal chloride-treated graphene oxide to produce high-performance polymer solar cells[J]. Appl. Phys. Lett., 2015,107023301. doi: 10.1063/1.4926799

    47. [47]

      J.S. Yeo, J.M. Yun, Y.S. Jung. Sulfonic acid-functionalized, reduced graphene oxide as an advanced interfacial material leading to donor polymer-independent high-performance polymer solar cells[J]. J. Mater. Chem. A, 2014,2:292-298. doi: 10.1039/C3TA13647G

    48. [48]

      A.F. Hu, Q.X. Wang, L. Chen. In situ formation of ZnO in graphene: a facile way to produce a smooth and highly conductive electron transport layer for polymer solar cells[J]. ACS Appl. Mater. Interfaces, 2015,7:16078-16085. doi: 10.1021/acsami.5b04555

    49. [49]

      L.Y. Zhou, D. Yang, W. Yu, J. Zhang, C. Li. An efficient polymer solar cell using graphene oxide interface assembled via layer-by-layer deposition[J]. Org. Electron., 2015,23:110-115. doi: 10.1016/j.orgel.2015.04.017

    50. [50]

      M.K. Chuang, F.C. Chen. Synergistic plasmonic effects of metal nanoparticledecorated PEGylated graphene oxides in polymer solar cells[J]. ACS Appl. Mater. Interfaces, 2015,7:7397-7405. doi: 10.1021/acsami.5b01161

    51. [51]

      S.S. Li, K.H. Tu, C.C. Lin, C.W. Chen, M. Chhowalla. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells[J]. ACS Nano, 2010,4:3169-3174. doi: 10.1021/nn100551j

    52. [52]

      S. Mao, H.H. Pu, J.H. Chen. Graphene oxide and its reduction: modeling and experimental progress[J]. RSC Adv., 2012,2:2643-2662. doi: 10.1039/c2ra00663d

    53. [53]

      Y.J. Jeon, J.M. Yun, D.Y. Kim, S.I. Na, S.S. Kim. High-performance polymer solar cells with moderately reduced graphene oxide as an efficient hole transporting layer[J]. Sol. Energy Mater. Sol. Cells, 2012,105:96-102. doi: 10.1016/j.solmat.2012.05.024

    54. [54]

      J. Liu, Y.H. Xue, L.M. Dai. Sulfated graphene oxide as a hole-extraction layer in high-performance polymer solar cells[J]. J. Phys. Chem. Lett., 2012,3:1928-1933. doi: 10.1021/jz300723h

    55. [55]

      D. Yang, L.Y. Zhou, W. Yu, J. Zhang, C. Li. Work-function-tunable chlorinated graphene oxide as an anode interface layer in high-efficiency polymer solar cells[J]. Adv. Energy Mater., 2014,41400591. doi: 10.1002/aenm.201400591

    56. [56]

      S. Wang, P.K. Ang, Z.Q. Wang. High mobility, printable, and solutionprocessed graphene electronics[J]. Nano Lett., 2010,10:92-98. doi: 10.1021/nl9028736

    57. [57]

      J. Liu, Y.H. Xue, Y.X. Gao. Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells[J]. Adv. Mater., 2012,24:2228-2233. doi: 10.1002/adma.201104945

    58. [58]

      H.B. Yang, Y.Q. Dong, X.Z. Wang. Graphene quantum dots-incorporated cathode buffer for improvement of inverted polymer solar cells[J]. Sol. Energy Mater. Sol. Cells, 2013,117:214-218. doi: 10.1016/j.solmat.2013.05.060

    59. [59]

      H.B. Yang, Y.Q. Dong, X.Z. Wang. Cesium carbonate functionalized graphene quantum dots as stable electron-selective layer for improvement of inverted polymer solar cells[J]. ACS Appl. Mater. Interfaces, 2014,6:1092-1099. doi: 10.1021/am404638e

    60. [60]

      Z.C. Ding, Z. Hao, B. Meng. Few-layered graphene quantum dots as efficient hole-extraction layer for high-performance polymer solar cells[J]. Nano Energy, 2015,15:186-192. doi: 10.1016/j.nanoen.2015.04.019

    61. [61]

      Z.C.Ding, Z.S.Miao, Z.Y.Xie, J.Liu. Functionalizedgraphenequantumdotsasanovel cathode interlayer of polymer solar cells[J]. J. Mater. Chem. A, 2016,4:2413-2418. doi: 10.1039/C5TA10102F

    62. [62]

      W.U. Huynh, J.J. Dittmer, A.P. Alivisatos. Hybrid nanorod-polymer solar cells[J]. Science, 2002,295:2425-2427. doi: 10.1126/science.1069156

    63. [63]

      W.L. Meng, X. Zhou, Z.L. Qiu. Reduced graphene oxide-supported aggregates of CuInS2 quantum dots as an effective hybrid electron acceptor for polymerbased solar cells[J]. Carbon, 2016,96:532-540. doi: 10.1016/j.carbon.2015.09.068

    64. [64]

      M.M. Stylianakis, M. Sygletou, K. Savva. Photochemical synthesis of solution-processable graphene derivatives with tunable bandgaps for organic solar cells[J]. Adv. Opt. Mater., 2015,3:658-666. doi: 10.1002/adom.v3.5

    65. [65]

      Z.F. Liu, Q. Liu, Y. Huang. Organic photovoltaic devices based on a novel acceptor material: graphene[J]. Adv. Mater., 2008,20:3924-3930. doi: 10.1002/adma.v20:20

    66. [66]

      Q. Liu, Z.F. Liu, X.Y. Zhang. Polymer photovoltaic cells based on solutionprocessable graphene and P3HT[J]. Adv. Funct. Mater., 2009,19:894-904. doi: 10.1002/adfm.v19:6

    67. [67]

      D.S. Yu, Y. Yang, M. Durstock, J.B. Baek, L.M. Dai. Soluble P3HT-grafted graphene for efficient bilayer-heterojunction photovoltaic devices[J]. ACS Nano, 2010,4:5633-5640. doi: 10.1021/nn101671t

    68. [68]

      D.S. Yu, K. Park, M. Durstock, L.M. Dai. Fullerene-grafted graphene for efficient bulk heterojunction polymer photovoltaic devices[J]. J. Phys. Chem. Lett., 2011,2:1113-1118. doi: 10.1021/jz200428y

    69. [69]

      C. Li, Y.H. Chen, S.A. Ntim, S. Mitra. Fullerene-multiwalled carbon nanotube complexes for bulk heterojunction photovoltaic cells[J]. Appl. Phys. Lett., 2010,96143303. doi: 10.1063/1.3386526

    70. [70]

      Y. Li, Y. Hu, Y. Zhao. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics[J]. Adv. Mater., 2011,23:776-780. doi: 10.1002/adma.201003819

    71. [71]

      V. Gupta, N. Chaudhary, R. Srivastava. Luminescent graphene quantum dots for organic photovoltaic devices[J]. J. Am. Chem. Soc., 2011,133:9960-9963. doi: 10.1021/ja2036749

    72. [72]

      F.S. Li, L.J. Kou, W. Chen, C.X. Wu, T.L. Guo. Enhancing the short-circuit current and power conversion efficiency of polymer solar cells with graphene quantum dots derived from double-walled carbon nanotubes[J]. NPG Asia Mater., 2013,5e60. doi: 10.1038/am.2013.38

    73. [73]

      J.K. Kim, M.J. Park, S.J. Kim. Balancing light absorptivity and carrier conductivity of graphene quantum dots for high-efficiency bulk heterojunction solar cells[J]. ACS Nano, 2013,7:7207-7212. doi: 10.1021/nn402606v

    74. [74]

      G.H. Jun, S.H. Jin, B. Lee. Enhanced conduction and charge-selectivity by N-doped graphene flakes in the active layer of bulk-heterojunction organic solar cells[J]. Energy Environ. Sci., 2013,6:3000-3006. doi: 10.1039/c3ee40963e

  • 加载中
    1. [1]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    2. [2]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    3. [3]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    4. [4]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    5. [5]

      Jiqing LiuQi DangLiting WangDejin WangLiang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277

    6. [6]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    7. [7]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    8. [8]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    9. [9]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    10. [10]

      Jiaqi LinPupu YangYimin JiangShiqian DuDongcai ZhangGen HuangJinbo WangJun WangQie LiuMiaoyu LiYujie WuPeng LongYangyang ZhouLi TaoShuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435

    11. [11]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    12. [12]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    13. [13]

      Han YanJingming YaoZhangran YeQiaoquan LinZiqi ZhangShulin LiDawei SongZhenyu WangChuang YuLong Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568

    14. [14]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    15. [15]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    16. [16]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    17. [17]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    18. [18]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

    19. [19]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    20. [20]

      Yingfen LiZhiqi WangYunhai ZhaoDajun LuoXueliang ZhangJun ZhaoZhenghua SuShuo ChenGuangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468

Metrics
  • PDF Downloads(9)
  • Abstract views(861)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return