Citation: Qin-Fen Li, Shuang Liu, Hong-Zheng Chen, Han-Ying Li. Alignment and patterning of organic single crystals for field-effect transistors[J]. Chinese Chemical Letters, ;2016, 27(8): 1421-1428. doi: 10.1016/j.cclet.2016.06.027 shu

Alignment and patterning of organic single crystals for field-effect transistors

  • Corresponding author: Han-Ying Li, cells.hanying_li@zju.edu.cn
  • Received Date: 4 May 2016
    Revised Date: 29 May 2016
    Accepted Date: 2 June 2016
    Available Online: 29 August 2016

Figures(5)

  • Organic field-effect transistors are of great importance to electronic devices. With the emergence of various preparation techniques for organic semiconductor materials, the device performance has been improved remarkably. Among all of the organic materials, single crystals are potentially promising for high performances due to high purity and well-ordered molecular arrangement. Based on organic single crystals, alignment and patterning techniques are essential for practical industrial application of electronic devices. In this review, recently developed methods for crystal alignment and patterning are described.
  • 加载中
    1. [1]

      A. Tsumura, H. Koezuka, T. Ando. Macromolecular electronic device: field-effect transistor with a polythiophene thin film[J]. Appl. Phys. Lett., 1986,49:1210-1212. doi: 10.1063/1.97417

    2. [2]

      H.L. Dong, X.L. Fu, J. Liu, Z.R. Wang, W.P. Hu. 25th anniversary article: key points for high-mobility organic field-effect transistors[J]. Adv. Mater., 2013,25:6158-6183. doi: 10.1002/adma.v25.43

    3. [3]

      H. Sirringhaus. 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon[J]. Adv. Mater., 2014,26:1319-1335. doi: 10.1002/adma.201304346

    4. [4]

      J.G. Mei, Y. Diao, A.L. Appleton, L. Fang, Z.A. Bao. Integrated materials design of organic semiconductors for field-effect transistors[J]. J. Am. Chem. Soc., 2013,135:6724-6746. doi: 10.1021/ja400881n

    5. [5]

      M. Gsänger, D. Bialas, L.Z. Huang, M. Stolte, F. Würthner. Organic semiconductors based on dyes and color pigments[J]. Adv. Mater., 2016,28:3615-3645. doi: 10.1002/adma.v28.19

    6. [6]

      G. Schweicher, N. Paquay, C. Amato. Toward single crystal thin films of terthiophene by directional crystallization using a thermal gradient[J]. Cryst. Growth Des., 2011,11:3663-3672. doi: 10.1021/cg2007793

    7. [7]

      C.W. Tang. Two-layer organic photovoltaic cell[J]. Appl. Phys. Lett., 1986,48:183-185. doi: 10.1063/1.96937

    8. [8]

      C.W. Tang, S.A. VanSlyke. Organic electroluminescent diodes[J]. Appl. Phys. Lett., 1987,51:913-915. doi: 10.1063/1.98799

    9. [9]

      S.Y. Min, T.S. Kim, Y. Lee. Organic nanowire fabrication and device applications[J]. Small, 2015,11:45-62. doi: 10.1002/smll.201401487

    10. [10]

      M. Kaltenbrunner, T. Sekitani, J. Reeder. An ultra-lightweight design for imperceptible plastic electronics[J]. Nature, 2013,499:458-463. doi: 10.1038/nature12314

    11. [11]

      C.A. Di, F.J. Zhang, D.B. Zhu. Multi-functional integration of organic field-effect transistors (OFETs): advances and perspectives[J]. Adv. Mater., 2013,25:313-330. doi: 10.1002/adma.201201502

    12. [12]

      Y. Li, H.B. Sun, Y. Shi, K. Tsukagoshi. Patterning technology for solution-processed organic crystal field-effect transistors[J]. Sci. Technol. Adv. Mater., 2014,15024203. doi: 10.1088/1468-6996/15/2/024203

    13. [13]

      C. Reese, Z.N. Bao. Organic single-crystal field-effect transistors[J]. Mater. Today, 2007,10:20-27.  

    14. [14]

      V. Podzorov. Organic single crystals: addressing the fundamentals of organic electronics[J]. MRS Bull., 2013,38:15-24. doi: 10.1557/mrs.2012.306

    15. [15]

      J.H. Dou, Y.Q. Zheng, Z.F. Yao. A cofacially stacked electron-deficient small molecule with a high electron mobility of over 10 cm2 v-1 s-1 in air[J]. Adv. Mater., 2015,27:8051-8055. doi: 10.1002/adma.201503803

    16. [16]

      J.H. Dou, Y.Q. Zheng, Z.F. Yao. Fine-tuning of crystal packing and charge transport properties of BDOPV derivatives through fluorine substitution[J]. J. Am. Chem. Soc., 2015,137:15947-15956. doi: 10.1021/jacs.5b11114

    17. [17]

      D.Q. Liu, Z.K. He, Y.R. Su. Self-assembled monolayers of cyclohexyl-terminated phosphonic acids as a general dielectric surface for high-performance organic thin-film transistors[J]. Adv. Mater., 2014,26:7190-7196. doi: 10.1002/adma.v26.42

    18. [18]

      J. Liu, H.T. Zhang, H.L. Dong. High mobility emissive organic semiconductor[J]. Nat. Commun., 2015,610032. doi: 10.1038/ncomms10032

    19. [19]

      Y.Diao, L.Shaw, Z.N.Bao, etal.. Morphologycontrolstrategiesfor solution-processed organic semiconductor thin films[J]. Energy Environ. Sci., 2014,7:2145-2159. doi: 10.1039/C4EE00688G

    20. [20]

      J. Chung, J. Hyon, K.S. Park. Controlled growth of rubrene nanowires by eutectic melt crystallization[J]. Sci. Rep., 2016,623108. doi: 10.1038/srep23108

    21. [21]

      H. Jiang, C. Kloc. Single-crystal growth of organic semiconductors[J]. MRS. Bull., 2013,38:28-33. doi: 10.1557/mrs.2012.308

    22. [22]

      L. Shaw, Z.N. Bao. The large-area, solution-based deposition of single-crystal organic semiconductors[J]. Isr. J. Chem., 2014,54:496-512. doi: 10.1002/ijch.201400032

    23. [23]

      X.J. Zhang, J.S. Jie, W. Deng. Alignment and patterning of ordered smallmolecule organic semiconductor micro-/nanocrystals for device applications[J]. Adv. Mater., 2016,28:2475-2503. doi: 10.1002/adma.201504206

    24. [24]

      K.S. Park, B. Cho, J. Baek. Single-crystal organic nanowire electronics by direct printing from molecular solutions[J]. Adv. Funct. Mater., 2013,23:4776-4784.  

    25. [25]

      A. Kim, K.S. Jang, J. Kim. Solvent-free directed patterning of a highly ordered liquid crystalline organic semiconductor via template-assisted self-assembly for organic transistors[J]. Adv. Mater., 2013,25:6219-6225. doi: 10.1002/adma.v25.43

    26. [26]

      A. Kumatani, C. Liu, Y. Li. Solution-processed, self-organized organic single crystal arrays with controlled crystal orientation[J]. Sci. Rep., 2012,2393.  

    27. [27]

      W. Pisula, A. Menon, M. Stepputat. A zone-casting technique for device fabrication of field-effect transistors based on discotic hexa-peri-hexabenzocoronene[J]. Adv. Mater., 2005,17:684-689. doi: 10.1002/adma.200401171

    28. [28]

      M.M. Li, C.B. An, W. Pisula, MüllenF K.. Alignment of organic semiconductor microstripes by two-phase dip-coating[J]. Small, 2014,10:1926-1931. doi: 10.1002/smll.201303182

    29. [29]

      L.Q. Li, P. Gao, K.C. Schuermann. Controllable growth and field-effect property of monolayer to multilayer microstripes of an organic semiconductor[J]. J. Am. Chem. Soc., 2010,132:8807-8809. doi: 10.1021/ja1017267

    30. [30]

      C.W. Sele, B.K.C. Kjellander, B. Niesen. Controlled deposition of highly ordered soluble acene thin films: effect of morphology and crystal orientation on transistor performance[J]. Adv. Mater., 2009,21:4926-4931. doi: 10.1002/adma.v21:48

    31. [31]

      Y. Liu, X.L. Zhao, B. Cai. Controllable fabrication of oriented micro/nanowire arrays of dibenzo-tetrathiafulvalene by a multiple drop-casting method[J]. Nanoscale, 2014,6:1323-1328. doi: 10.1039/C3NR05680E

    32. [32]

      C.C. Fan, A.P. Zoombelt, H. Jiang. Solution-grown organic single-crystalline p-n junctions with ambipolar charge transport[J]. Adv. Mater., 2013,25:5762-5766. doi: 10.1002/adma.v25.40

    33. [33]

      J. Kim, S. Cho, J.G. Kang, Y.H. Kim, S.K. Park. Large-scale organic single-crystal thin films and transistor arrays via the evaporation-controlled fluidic channel method[J]. ACS Appl. Mater. Interfaces, 2014,6:7133-7140. doi: 10.1021/am5018804

    34. [34]

      G. Giri, S. Park, M. Vosgueritchian, M.M. Shulaker. High-mobility, aligned crystalline domains of TIPS-pentacene with metastable polymorphs through lateral confinement of crystal growth[J]. Adv. Mater., 2014,26:487-493. doi: 10.1002/adma.201302439

    35. [35]

      Y. Diao, B.C.K. Tee, G. Giri. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains[J]. Nat. Mater., 2013,12:665-671. doi: 10.1038/nmat3650

    36. [36]

      G. Giri, R.P. Li, D.M. Smilgies. One-dimensional self-confinement promotes polymorph selection in large-area organic semiconductor thin films[J]. Nat. Commun., 2014,53573.  

    37. [37]

      J.H. Oh, H.W. Lee, S. Mannsfeld. Solution-processed, high-performance nchannel organic microwire transistors[J]. Proc. Natl. Acad. Sci. U.S.A., 2009,106:6065-6070. doi: 10.1073/pnas.0811923106

    38. [38]

      V.C. Sundar, J. Zaumseil, V. Podzorov. Elastomeric transistor stamps: reversible probing of charge transport in organic crystals[J]. Science, 2004,303:1644-1646. doi: 10.1126/science.1094196

    39. [39]

      W.H. Lee, D.H. Kim, Y. Jang. Solution-processable pentacene microcrystal arrays for high performance organic field-effect transistors[J]. Appl. Phys. Lett., 2007,90132106. doi: 10.1063/1.2717087

    40. [40]

      L.Q. Li, P. Gao, W.C. Wang. Growth of ultrathin organic semiconductor microstripes with thickness control in the monolayer precision[J]. Angew. Chem. Int. Ed., 2013,52:12530-12535. doi: 10.1002/anie.201306953

    41. [41]

      T. Uemura, Y. Hirose, M. Uno, K. Takimiya, J. Takeya. Very high mobility in solution-processed organic thin-film transistors of highly ordered[J]. Appl. Phys. Express, 2009,2111501. doi: 10.1143/APEX.2.111501

    42. [42]

      R.J. Li, W.P. Hu, Y.Q. Liu, D.B. Zhu. Micro-and nanocrystals of organic semiconductors[J]. Acc. Chem. Res., 2010,43:529-540. doi: 10.1021/ar900228v

    43. [43]

      K. Zhou, H.L. Dong, H.L. Zhang, W.P. Hu. High performance n-type and ambipolar small organic semiconductors for organic thin film transistors[J]. Phys. Chem. Chem. Phys., 2014,16:22448-22457. doi: 10.1039/C4CP01700E

    44. [44]

      P. Zhang, Q.X. Tang, Y.H. Tong. Brush-controlled oriented growth of TCNQ microwire arrays for field-effect transistors[J]. J. Mater. Chem. C, 2016,4:433-439. doi: 10.1039/C5TC03362D

    45. [45]

      H.Y. Zhao, Z. Wang, G.F. Dong, L. Duan. Fabrication of highly oriented large-scale TIPS pentacene crystals and transistors by the marangoni effect-controlled growth method[J]. Phys. Chem. Chem. Phys., 2015,17:6274-6279. doi: 10.1039/C4CP05378H

    46. [46]

      Y. Liu, Y.J. Han, X.L. Zhao. Single-crystal tetrathiafulvalene microwire arrays formed by drop-casting method in the saturated solvent atmosphere[J]. Synth. Met., 2014,198:248-254. doi: 10.1016/j.synthmet.2014.10.039

    47. [47]

      H.A. Becerril, M.E. Roberts, Z.H. Liu, J. Locklin, Z.N. Bao. High-performance organic thin-film transistors through solution-sheared deposition of small-molecule organic semiconductors[J]. Adv. Mater., 2008,20:2588-2594. doi: 10.1002/adma.v20:13

    48. [48]

      G. Giri, E. Verploegen, S.C.B. Mannsfeld. Tuning charge transport in solutionsheared organic semiconductors using lattice strain[J]. Nature, 2011,480:504-508. doi: 10.1038/nature10683

    49. [49]

      Y.Z. Li, D.Y. Ji, J. Liu. Quick fabrication of large-area organic semiconductor single crystal arrays with a rapid annealing self-solution-shearing method[J]. Sci. Rep., 2015,513195. doi: 10.1038/srep13195

    50. [50]

      H.Y. Li, B.C.K. Tee, J.J. Cha. High-mobility field-effect transistors from largearea solution-grown aligned C60 single crystals[J]. J. Am. Chem. Soc., 2012,134:2760-2765. doi: 10.1021/ja210430b

    51. [51]

      G.B. Xue, J.K. Wu, C.C. Fan. Boosting the electron mobility of solution-grown organic single crystals via reducing the amount of polar solvent residues[J]. Mater. Horiz., 2016,3:119-123. doi: 10.1039/C5MH00190K

    52. [52]

      C.L. Wang, Z.X. Liang, Y.L. Liu. Single crystal n-channel field effect transistors from solution-processed silylethynylated tetraazapentacene[J]. J. Mater. Chem., 2011,21:15201-15204. doi: 10.1039/c1jm13153b

    53. [53]

      J.E. Anthony, J.S. Brooks, D.L. Eaton, S.R. Parki. Functionalized pentacene: improved electronic properties from control of solid-state order[J]. J. Am. Chem. Soc., 2001,123:9482-9483. doi: 10.1021/ja0162459

    54. [54]

      G.B. Xue, C.C. Fan, J.K. Wu. Ambipolar charge transport of TIPS-pentacene single-crystals grown from non-polar solvents[J]. Mater. Horiz., 2015,2:344-349. doi: 10.1039/C4MH00211C

    55. [55]

      K. Liu, C.L. Song, Y.C. Zhou. Tuning theambipolar charge transport properties of N-heteropentacenes by their frontier molecular orbital energy levels[J]. J. Mater. Chem. C, 2015,3:4188-4196.  

    56. [56]

      Z.T. Huang, C.C. Fan, G.B. Xue. Solution-grown aligned crystals of diketopyrrolopyrroles (DPP)-based small molecules: rough surfaces and relatively low charge mobility[J]. Chin. Chem. Lett., 2016,27:523-526. doi: 10.1016/j.cclet.2016.01.054

    57. [57]

      S. Liu, J.K. Wu, C.C. Fan. Large-scale fabrication of field-effect transistors based on solution-grown organic single crystals[J]. Sci. Bull., 2015,60:1122-1127. doi: 10.1007/s11434-015-0817-9

    58. [58]

      H.Y. Li, J.G. Mei, A.L. Ayzner. A simple droplet pinning method for polymer film deposition for measuring charge transport in a thin film transistor[J]. Org. Electron., 2012,13:2450-2460. doi: 10.1016/j.orgel.2012.07.011

    59. [59]

      H.Y.Li, C.C.Fan, M.Vosgueritchian, B.C.K.Tee, H.Z.Chen. Solution-grownaligned C60 single-crystals for field-effect transistors[J]. J. Mater. Chem. C, 2014,2:3617-3624. doi: 10.1039/c3tc32431a

    60. [60]

      J.K. Wu, C.C. Fan, G.B. Xue. Interfacing solution-grown C60 and (3-pyrrolinium)(CdCl3) single crystals for high-mobility transistor-based memory devices[J]. Adv. Mater., 2015,27:4476-4480. doi: 10.1002/adma.v27.30

    61. [61]

      H.Y. Li, C.C. Fan, W.F. Fu, H.L. Xin, H.Z. Chen. Solution-grown organic singlecrystalline donor-acceptor heterojunctions for photovoltaics[J]. Angew. Chem. Int. Ed., 2015,54:956-960. doi: 10.1002/anie.201408882

    62. [62]

      C.Y. Zhang, X.J. Zhang, X.H. Zhang. Facile one-step growth and patterning of aligned squaraine nanowires via evaporation-induced self-assembly[J]. Adv. Mater., 2008,20:1716-1720. doi: 10.1002/(ISSN)1521-4095

    63. [63]

      C.Y. Zhang, X.J. Zhang, X.H. Zhang. Facile one-step fabrication of ordered organic nanowire films[J]. Adv. Mater., 2009,21:4172-4175. doi: 10.1002/adma.v21:41

    64. [64]

      H. Klauk, U. Zschieschang, J. Pflaum, M. Halik. Ultralow-power organic complementary circuits[J]. Nature, 2007,445:745-748. doi: 10.1038/nature05533

    65. [65]

      J.A. Venables, G.D.T. Spiller, M. Hanbucken. Nucleation and growth of thin films[J]. Rep. Prog. Phys., 1984,47:399-459. doi: 10.1088/0034-4885/47/4/002

    66. [66]

      Y.S. Zhao, P. Zhan, J. Kim, C. Sun, J.X. Huang. Patterned growth of vertically aligned organic nanowire waveguide arrays[J]. ACS Nano, 2010,4:1630-1636. doi: 10.1021/nn901567z

    67. [67]

      A.L. Briseno, S.C.B. Mannsfeld, M.M. Ling. Patterning organic single-crystal transistor arrays[J]. Nature, 2006,444:913-917. doi: 10.1038/nature05427

    68. [68]

      A.L. Briseno, J. Aizenberg, Y.J. Han. Patterned growth of large oriented organic semiconductor single crystals on self-assembled monolayer templates[J]. J. Am. Chem. Soc., 2005,127:12164-12165. doi: 10.1021/ja052919u

    69. [69]

      S.C.B. Mannsfeld, A.L. Briseno, S. Liu. Selective nucleation of organic single crystals from vapor phase on nanoscopically rough surfaces[J]. Adv. Funct. Mater., 2007,17:3545-3553. doi: 10.1002/(ISSN)1616-3028

    70. [70]

      S.H. Liu, A.L. Briseno, S.C.B. Mannsfeld. Selective crystallization of organic semiconductors on patterned templates of carbon nanotubes[J]. Adv. Funct. Mater., 2007,17:2891-2896. doi: 10.1002/(ISSN)1616-3028

    71. [71]

      Y.C. Wu, J.G. Feng, X.Y. Jiang. Positioning and joining of organic singlecrystalline wires[J]. Nat. Commun., 2015,66737. doi: 10.1038/ncomms7737

    72. [72]

      Y. Li, C. Liu, A. Kumatani. Patterning solution-processed organic singlecrystal transistors with high device performance[J]. AIP Adv., 2011,1022149. doi: 10.1063/1.3608793

    73. [73]

      Y. Li, C. Liu, A. Kumatani. Large plate-like organic crystals from direct spincoating for solution-processed field-effect transistor arrays with high uniformity[J]. Org. Electron., 2012,13:264-272. doi: 10.1016/j.orgel.2011.11.012

    74. [74]

      S.H. Liu, W.M. Wang, S.C.B. Mannsfeld. Solution-assisted assembly of organic semiconducting single crystals on surfaces with patterned wettability[J]. Langmuir, 2007,23:7428-7432. doi: 10.1021/la700493p

    75. [75]

      S.C.B. Mannsfeld, A. Sharei, S.H. Liu. Highly efficient patterning of organic single-crystal transistors from the solution phase[J]. Adv. Mater., 2008,20:4044-4048. doi: 10.1002/adma.v20:21

    76. [76]

      R.R. Bao, C.Y. Zhang, X.J. Zhang. Self-assembly and hierarchical patterning of aligned organic nanowire arrays by solvent evaporation on substrates with patterned wettability[J]. ACS Appl. Mater. Interfaces, 2013,5:5757-5762. doi: 10.1021/am4012885

    77. [77]

      Y.C. Wu, J.G. Feng, B. Su, L. Jiang. 3D dewetting for crystal patterning: toward regular single-crystalline belt arrays and their functionality[J]. Adv. Mater., 2016,28:2266-2273. doi: 10.1002/adma.201503235

    78. [78]

      H. Minemawari, T. Yamada, H. Matsui. Inkjet printing of single-crystal films[J]. Nature, 2011,475:364-367. doi: 10.1038/nature10313

    79. [79]

      Y.H. Kim, B. Yoo, J.E. Anthony, S.K. Park. Controlled deposition of a high-performance small-molecule organic single-crystal transistor array by direct ink-jet printing[J]. Adv. Mater., 2012,24:497-502. doi: 10.1002/adma.201103032

    80. [80]

      K. Nakayama, Y. Hirose, J. Soeda. Patternable solution-crystallized organic transistors with high charge carrier mobility[J]. Adv. Mater., 2011,23:1626-1629. doi: 10.1002/adma.201004387

    81. [81]

      H.B. Akkerman, A.C. Chang, E. Verploegen. Fabrication of organic semiconductor crystalline thin films and crystals from solution by confined crystallization[J]. Org. Electron., 2012,13:235-243. doi: 10.1016/j.orgel.2011.11.005

    82. [82]

      M. Cavallini, P. D'Angelo, V.V. Criado. Ambipolar multi-stripe organic fieldeffect transistors[J]. Adv. Mater., 2011,23:5091-5097. doi: 10.1002/adma.201103439

    83. [83]

      Z.R. He, N. Lopez, X.L. Chi, D.W. Li. Solution-based 5,6,11,12-tetrachlorotetracene crystal growth for high-performance organic thin film transistors[J]. Org. Electron., 2015,22:191-196. doi: 10.1016/j.orgel.2015.03.050

    84. [84]

      W. Deng, X.J. Zhang, L. Wang. Wafer-scale precise patterning of organic single-crystal nanowire arrays via a photolithography-assisted spin-coating method[J]. Adv. Mater., 2015,27:7305-7312. doi: 10.1002/adma.201503019

    85. [85]

      P.S. Jo, A. Vailionis, Y.M. Park, A. Salleo. Scalable fabrication of strongly textured organic semiconductor micropatterns by capillary force lithography[J]. Adv. Mater., 2012,24:3269-3274. doi: 10.1002/adma.v24.24

    86. [86]

      J. Soeda, T. Uemura, T. Okamoto. Inch-size solution-processed singlecrystalline films of high-mobility organic semiconductors[J]. Appl. Phys. Express, 2013,6076503. doi: 10.7567/APEX.6.076503

    87. [87]

      H.M. Lee, H. Moon, H.S. Kim. Abrupt heating-induced high-quality crystalline rubrene thin films for organic thin-film transistors[J]. Org. Electron., 2011,12:1446-1453. doi: 10.1016/j.orgel.2011.05.015

    88. [88]

      H.M. Lee, J.J. Kim, J.H. Choi, S.O. Cho. In situ patterning of high-quality crystalline rubrene thin films for high-resolution patterned organic field-effect transistors[J]. ACS Nano, 2011,5:8352-8356. doi: 10.1021/nn203068q

    89. [89]

      I. Bae, S.J. Kang, Y.J. Shin. Tailored single crystals of triisopropylsilylethynyl pentacene by selective contact evaporation printing[J]. Adv. Mater., 2011,23:3398-3402. doi: 10.1002/adma.201100784

  • 加载中
    1. [1]

      Yuqing DingZhiying YiZhihui WangHongyu ChenYan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918

    2. [2]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    3. [3]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    4. [4]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    5. [5]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    6. [6]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    7. [7]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    8. [8]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    9. [9]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    10. [10]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    11. [11]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    12. [12]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    13. [13]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    14. [14]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    15. [15]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    16. [16]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    17. [17]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    18. [18]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    19. [19]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    20. [20]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

Metrics
  • PDF Downloads(3)
  • Abstract views(722)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return