Citation: Abbasi Zahra, Rezayati Sobhan, Bagheri Maryam, Hajinasiri Rahimeh. Preparation of a novel, efficient, and recyclable magnetic catalyst, γ-Fe2O3@HAp-Ag nanoparticles, and a solventand halogen-free protocol for the synthesis of coumarin derivatives[J]. Chinese Chemical Letters, ;2017, 28(1): 75-82. doi: 10.1016/j.cclet.2016.06.022 shu

Preparation of a novel, efficient, and recyclable magnetic catalyst, γ-Fe2O3@HAp-Ag nanoparticles, and a solventand halogen-free protocol for the synthesis of coumarin derivatives

  • Corresponding author: Rezayati Sobhan, sobhan.rezayati@yahoo.com
  • Received Date: 5 May 2016
    Revised Date: 3 June 2016
    Accepted Date: 12 June 2016
    Available Online: 21 January 2016

Figures(9)

  • In this protocol, Ag supported on the hydroxyapatite-core-shell magnetic γ-Fe2O3 nanoparticles (γ-Fe2O3@HAp-Ag NPs) as a novel, efficient, and magnetically recyclable catalyst is synthesized, and characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM). The use of the catalyst is described in the synthesis of coumarin derivatives by the Pechmann condensation of various phenols with β-ketoesters under solvent-and halogen-free conditions at 80℃. This novel and inexpensive method offers advantages, such as recyclability simple experimental protocol, short reaction time, minimal work-up procedure, and excellent yields of products, together with desirable, eco-friendly, green aspects by avoiding toxic elements and solvents, and ease of recovery from the reaction mixture using an external magnet.
  • 加载中
    1. [1]

      Pankhurst Q.A., Connolly J., Jones S.K., Dobson J.. Applications of magnetic nanoparticles in biomedicine[J]. J. Phys. D. Appl. Phys., 2003,36:R167-R181. doi: 10.1088/0022-3727/36/13/201

    2. [2]

      Gupta A.K., Curtis A.S.G.. Surface modified superparamagnetic nanoparticles for drug delivery:interaction studies with human fibroblasts in culture[J]. J. Mater. Sci. Mater. Med., 2004,15:493-496. doi: 10.1023/B:JMSM.0000021126.32934.20

    3. [3]

      Neuberger T., Schöpf B., Hofmann H., Hofmann M., von Rechenberg B.. Superparamagnetic nanoparticles for biomedical applications:possibilities and limitations of a new drug delivery system[J]. J. Magn. Magn. Mater., 2005,293:483-496. doi: 10.1016/j.jmmm.2005.01.064

    4. [4]

      Wang D.S., He J.B., Rosenzweig N., Rosenzweig Z.. Superparamagnetic Fe2O3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation[J]. Nano Lett., 2004,4:409-413. doi: 10.1021/nl035010n

    5. [5]

      Xu C.J., Xu K.M., Gu H.W.. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles[J]. J. Am. Chem. Soc., 2004,126:9938-9939. doi: 10.1021/ja0464802

    6. [6]

      Perez J.M., Simeone F.J., Saeki Y., Josephson L., Weissleder R.. Viral-induced selfassembly of magnetic nanoparticles allows the detection of viral particles in biological media[J]. J. Am. Chem. Soc., 2003,125:10192-10193. doi: 10.1021/ja036409g

    7. [7]

      Graham D.L., Ferreira H.A., Freitas P.P.. Magnetoresistive-based biosensors and biochips[J]. Trends Biotechnol., 2004,22:455-462. doi: 10.1016/j.tibtech.2004.06.006

    8. [8]

      Hiergeist R., Andr W., Buske N.. Application of magnetite ferrofluids for hyperthermia[J]. J. Magn. Magn. Mater., 1999,201:420-422. doi: 10.1016/S0304-8853(99)00145-6

    9. [9]

      Jordan A., Scholz R., Wust P., Fähling H., Felix R.. Magnetic fluid hyperthermia (MFH):cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles[J]. J. Magn. Magn. Mater., 1999,201:413-419. doi: 10.1016/S0304-8853(99)00088-8

    10. [10]

      Kassaee M.Z., Masrouri H., Movahedi F.. Sulfamic acid-functionalized magnetic Fe3O4 nanoparticles as an efficient and reusable catalyst for one-pot synthesis of α-amino nitriles in water[J]. Appl. Catal. A Gen., 2011,395:28-33. doi: 10.1016/j.apcata.2011.01.018

    11. [11]

      Kiasat A.R., Nazari S.. Magnetic nanoparticles grafted with β-cyclodextrin-polyurethane polymer as a novel nanomagnetic polymer brush catalyst for nucleophilic substitution reactions of benzyl halides in water[J]. J. Mol. Catal. A:Chem., 2012,365:80-86. doi: 10.1016/j.molcata.2012.08.012

    12. [12]

      Haeri H.S., Rezayati S., Nezhad E.R., Darvishi H.. Fe2+ supported on hydroxyapatite-core-shell-γ-Fe2O3 nanoparticles:efficient and recyclable green catalyst for the synthesis of 14-aryl-14H-dibenzo[a, j]xanthene derivatives[J]. Res. Chem. Intermed., 2016,42:4773-4784. doi: 10.1007/s11164-015-2318-5

    13. [13]

      Rezayati S., Jafroudi M.T., Nezhad E.R., Hajinasiri R., Abbaspour S.. Imidazolefunctionalized magnetic Fe3O4 nanoparticles:an efficient, green, recyclable catalyst for one-pot Friedländer quinoline synthesis[J]. Res. Chem. Intermed., 2016,42:5887-5898. doi: 10.1007/s11164-015-2411-9

    14. [14]

      Ghorbani A., Choghamarani -, Ghasemi B., Safari Z., Azadi G.. Schiff base complex coated Fe3O4 nanoparticles:a highly reusable nanocatalyst for the selective oxidation of sulfides and oxidative coupling of thiols[J]. Catal. Commun., 2015,60:70-75. doi: 10.1016/j.catcom.2014.11.007

    15. [15]

      Taher A., Kim J.B., Jung J.Y., Ahn W.S., Jin M.J.. Highly active and magnetically recoverable Pd-NHC catalyst immobilized on Fe3O4 nanoparticle-ionic liquid matrix for Suzuki reaction in water[J]. Synlett, 2009,15:2477-2482.

    16. [16]

      Nazari S., Saadat Sh., Fard P.K.. Imidazole functionalized magnetic Fe3O4 nanoparticles as a novel heterogeneous and efficient catalyst for synthesis of dihydropyrimidinones by Biginelli reaction[J]. Monatsh. Chem Chem. Mon., 2013,144:1877-1882. doi: 10.1007/s00706-013-1085-5

    17. [17]

      Nezhad E.R., Abbasi Z., Sajjadifar S.. Fe2+ supported on hydroxyapatite-core-shell-γ-Fe2O3 nanoparticles:as a novel, efficient and magnetically-recoverable catalyst for the synthesis of dihydropyrimidinones derivatives[J]. Sci. Iran. C., 2015,22:903-910.

    18. [18]

      Jiang Y.Y., Guo C., Xia H.S.. Magnetic nanoparticles supported ionic liquids for lipase immobilization:enzyme activity in catalyzing esterification[J]. J. Mol. Catal. B:Enzym., 2009,58:103-109. doi: 10.1016/j.molcatb.2008.12.001

    19. [19]

      Sajjadifar S., Abbasi Z., Nezhad E.R.. Ni2+ supported on hydroxyapatite-coreshell γ-Fe2O3 nanoparticles:a novel, highly efficient and reusable Lewis acid catalyst for the regioselective azidolysis of epoxides in water[J]. J. Iran. Chem. Soc., 2014,11:335-340. doi: 10.1007/s13738-013-0304-7

    20. [20]

      Zhang Y., Xia C.G.. Magnetic hydroxyapatite-encapsulated γ-Fe2O3 nanoparticles functionalized with basic ionic liquids for aqueous Knoevenagel condensation[J]. Appl. Catal. A:Gen., 2009,366:141-147. doi: 10.1016/j.apcata.2009.06.041

    21. [21]

      Abu R., Reziq -, Wang D.S., Post M., Alper H.. Platinum nanoparticles supported on ionic liquid-modified magnetic nanoparticles:selective hydrogenation catalysts[J]. Adv. Synth. Catal., 2007,349:2145-2150. doi: 10.1002/(ISSN)1615-4169

    22. [22]

      Safari J., Zarnegar Z.. Brønsted acidic ionic liquid based magnetic nanoparticles:a new promoter for the Biginelli synthesis of 3, 4-dihydropyrimidin-2(1H)-ones/thiones[J]. New J. Chem., 2014,38:358-365. doi: 10.1039/C3NJ01065A

    23. [23]

      Kooti M., Afshari M.. Phosphotungstic acid supported on magnetic nanoparticles as an efficient reusable catalyst for epoxidation of alkenes[J]. Mater. Res. Bull., 2012,47:3473-3478. doi: 10.1016/j.materresbull.2012.07.001

    24. [24]

      Zheng X.X., Luo S.Z., Zhang L., Cheng J.P.. Magnetic nanoparticle supported ionic liquid catalysts for CO2 cycloaddition reactions[J]. Green Chem., 2009,11:455-458. doi: 10.1039/b823123k

    25. [25]

      Zhang Q., Su H., Luo J., Wei Y.Y.. A magnetic nanoparticle supported dual acidic ionic liquid:a "quasi-homogeneous" catalyst for the one-pot synthesis of benzoxanthenes[J]. Green Chem., 2012,14:201-208. doi: 10.1039/C1GC16031A

    26. [26]

      Wang C.J., Hsieh Y.J., Chu C.Y., Lin Y.L., Tseng T.H.. Inhibition of cell cycle progression in human leukemia HL-60 cells by esculetin[J]. Cancer Lett., 2002,183:163-168. doi: 10.1016/S0304-3835(02)00031-9

    27. [27]

      Spino C., Dodier M., Sotheeswaran S.. Anti-HIV coumarins from calophyllum seed oil[J]. Bioorg. Med. Chem. Lett., 1998,8:3475-3487. doi: 10.1016/S0960-894X(98)00628-3

    28. [28]

      Fan G.J., Mar W., Park M.K.. A novel class of inhibitors for steroid 5areductase:synthesis and evaluation of umbelliferone derivatives[J]. Bioorg. Med. Chem. Lett., 2001,11:2361-2363. doi: 10.1016/S0960-894X(01)00429-2

    29. [29]

      Ghodke S., Chudasama U.. Solvent free synthesis of coumarins using environment friendly solid acid catalysts[J]. Appl. Catal. A, 2013,453:219-226. doi: 10.1016/j.apcata.2012.12.024

    30. [30]

      Izquierdo M.E.F., Granados J.Q., Mir M.V., Martinez M.C.L.. Comparison of methods for determining coumarins in distilled beverages[J]. Food. Chem., 2000,70:251-258. doi: 10.1016/S0308-8146(00)00071-6

    31. [31]

      Mokhtary M., Najafizadeh F.. Polyvinylpolypyrrolidone-bound boron trifluoride (PVPP-BF3); a mild and efficient catalyst for synthesis of 4-metyl coumarins via the Pechmann reaction[J]. C.R. Chim., 2012,15:530-532. doi: 10.1016/j.crci.2012.03.004

    32. [32]

      Ahmed A.I., El-Hakam S.A., Khder A.S., El W.S.A., Yazeed -. Nanostructure sulfated tin oxide as an efficient catalyst for the preparation of 7-hydroxy-4-methyl coumarin by Pechmann condensation reaction[J]. J. Mol. Catal. A Chem., 2013,366:99-108. doi: 10.1016/j.molcata.2012.09.012

    33. [33]

      Killard A.J., O'kennedy R., Bogan D.P.. Analysis of the glucuronidation of 7-hydroxycoumarin by HPLC[J]. J. Pharm. Biomed. Anal., 1996,14:1585-1590. doi: 10.1016/0731-7085(96)01801-8

    34. [34]

      Semple S.J., Nobbs S.F., Pyke S.M., Reynolds G.D., Flower R.L.P.. Antiviral flavonoid from Pterocaulon sphacelatum, an Australian Aboriginal medicine[J]. J. Ethnopharmacol., 1999,68:283-288. doi: 10.1016/S0378-8741(99)00050-1

    35. [35]

      Rajitha B., Kumar V.N., Someshwar P.. Dipyridine copper chloride catalyzed coumarin synthesis via Pechmann condensation under conventional heating and microwave irradiation[J]. Arkivoc., 2006,2006:23-27.

    36. [36]

      Patil A.D., Freyer A.J., Eggleston D.S.. The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn[J]. J. Med. Chem., 1993,36:4131-4138. doi: 10.1021/jm00078a001

    37. [37]

      Woods L.L., Sapp J.. A new one-step synthesis of substituted coumarins[J]. J. Org. Chem., 1962,27:3703-3705. doi: 10.1021/jo01057a519

    38. [38]

      Robertson A., Sandrock W.F., Hendry C.B.. CCCXX.X.-Hydroxy-carbonyl compounds. Part V. The preparation of coumarins and 1:4-pyrones from phenol, pcresol, quinol, and α-naphthol[J]. J. Chem. Soc., 1931:2426-2432.

    39. [39]

      Bose D.S., Rudradas A.P., Babu M.H.. The indium (Ⅲ) chloride-catalyzed von Pechmann reaction:a simple and effective procedure for the synthesis of 4-substituted coumarins[J]. Tetrahedron Lett., 2002,43:9195-9197. doi: 10.1016/S0040-4039(02)02266-9

    40. [40]

      Kadnikov D.V., Larock R.C.. Synthesis of coumarins via palladium-catalyzed carbonylative annulation of internal alkynes by o-Iodophenols[J]. Org. Lett., 2000,2:3643-3646. doi: 10.1021/ol0065569

    41. [41]

      Alexander V.M., Bhat R.P., Samant S.D.. Bismuth (Ⅲ) nitrate pentahydrate-a mild and inexpensive reagent for synthesis of coumarins under mild conditions[J]. Tetrahedron Lett., 2005,46:6957-6959. doi: 10.1016/j.tetlet.2005.07.117

    42. [42]

      Samadizadeh M., Nouri S., Kiani Moghadam F.. Magnetic nanoparticles functionalized ethane sulfonic acid (MNESA):as an efficient catalyst in the synthesis of coumarin derivatives using Pechmann condensation under mild condition[J]. Res. Chem. Intermed., 2016,42:6089-6103. doi: 10.1007/s11164-016-2447-5

    43. [43]

      Zareyee D., Serehneh M.. Recyclable CMK-5 supported sulfonic acid as an environmentally benign catalyst for solvent-free one-pot construction of coumarin through Pechmann condensation[J]. J. Mol. Catal. A:Chem., 2014,391:88-91. doi: 10.1016/j.molcata.2014.04.013

    44. [44]

      Rodríguez-Domínguez J.C., Kirsch G.. Sulfated zirconia, a mild alternative to mineral acids in the synthesis of hydroxycoumarins[J]. Tetrahedron Lett., 2006,47:3279-3281. doi: 10.1016/j.tetlet.2006.03.030

    45. [45]

      DeGrote J., Tyndall S., Wong K.F., VanAlstine M., Parris -. Synthesis of 7-alkoxy-4-trifluoromethylcoumarins via the von Pechmann reaction catalyzed by molecular iodine[J]. Tetrahedron Lett., 2014,55:6715-6717. doi: 10.1016/j.tetlet.2014.10.025

    46. [46]

      Romanelli G.P., Bennardi D., Ruiz D.M.. A solvent-free synthesis of coumarins using a Wells-Dawson heteropolyacid as catalyst[J]. Tetrahedron Lett., 2004,45:8935-8939. doi: 10.1016/j.tetlet.2004.09.183

    47. [47]

      Sinhamahapatra A., Sutradhar N., Pahari S., Bajaj H.C., Panda A.B.. Mesoporous zirconium phosphate:an efficient catalyst for the synthesis of coumarin derivatives through Pechmann condensation reaction[J]. Appl. Catal. A, 2011,394:93-100. doi: 10.1016/j.apcata.2010.12.027

    48. [48]

      Rezayati S., Nezhad E.R., Hajinasiri R.. 1-(1-Alkylsulfonic)-3-methylimidazolium chloride as a reusable Brønsted acid catalyst for the regioselective azidolysis of epoxides under solvent-free conditions[J]. Chin. Chem. Lett., 2016,27:974-978. doi: 10.1016/j.cclet.2016.02.015

    49. [49]

      Donadel K., Felisberto M.D.V., Laranjeira M.C.M.. Preparation and characterization of hydroxyapatite-coated iron oxide particles by spray-drying technique[J]. An. Acad. Bras. Ciênc., 2009,81:179-186. doi: 10.1590/S0001-37652009000200004

    50. [50]

      Rahmatpour A., Mohammadian S.. An environmentally friendly, chemoselective, and efficient protocol for the preparation of coumarin derivatives by Pechman condensation reaction using new and reusable heterogeneous Lewis acid catalyst polystyrene-supported GaCl3[J]. C.R. Chimie, 2013,16:271-278. doi: 10.1016/j.crci.2013.01.006

    51. [51]

      Karami B., Kiani M., Hoseini M.A.. In (OTf)3 as a powerful and recyclable catalyst for Pechmann condensation without solvent[J]. Chin. J. Catal., 2014,35:1206-1211. doi: 10.1016/S1872-2067(14)60090-5

  • 加载中
    1. [1]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    2. [2]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    3. [3]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    4. [4]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    5. [5]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    6. [6]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    7. [7]

      Guanxiong YuChengkai XuHuaqiang JuJie RenGuangpeng WuChengjian ZhangXinghong ZhangZhen XuWeipu ZhuHao-Cheng YangHaoke ZhangJianzhao LiuZhengwei MaoYang ZhuQiao JinKefeng RenZiliang WuHanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893

    8. [8]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    9. [9]

      Yulong LiuHaoran LuTong YangPeng ChengXu HanWenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492

    10. [10]

      Yufei LiuLiang XiongBingyang GaoQingyun ShiYing WangZhiya HanZhenhua ZhangZhaowei MaLimin WangYong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932

    11. [11]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    12. [12]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    13. [13]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    14. [14]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    15. [15]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    16. [16]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    17. [17]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    18. [18]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    19. [19]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    20. [20]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

Metrics
  • PDF Downloads(6)
  • Abstract views(934)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return